Characterization of a MLIC Detector for QA in Scanned Proton and Carbon Ion Beams.
摘要:
Beam energy validation is a fundamental aspect of the routine quality assurance (QA) protocol of a particle therapy facility. A multilayer ionization chamber (MLIC) detector provides the optimal tradeoff between achieving accuracy in particle range determination and saving operational time in measurements and analysis procedures. We propose the characterization of a commercial MLIC as a suitable QA tool for a clinical environment with proton and carbon-ion scanning beams. Commercial MLIC Giraffe (IBA Dosimetry, Schwarzenbruck, Germany) was primarily evaluated in terms of short-term and long-term stability, linearity with dose, and dose-rate independence. Accuracy was tested by analyzing range of integrated depth-dose curves for a set of representative energies against reference acquisitions in water for proton and carbon ion beams; in addition, 2 modulated proton spread-out Bragg peaks were also measured. Possible methods to increase the native spatial resolution of the detector were also investigated. Measurements showed a high repeatability: mean relative standard deviation was within 0.5% for all channels and both particle types. The long-term stability of the gain calibration showed discrepancies less than 1% at different times. The detector response was linear with dose (R 2 > 0.99) and independent on the dose rate. Measurements of integrated depth-dose curve ranges revealed a mean deviation from reference measurements in water of 0.1 ± 0.3 mm for protons with a maximum difference of 0.4 mm and 0.2 ± 0.6 mm with maximum difference of 0.85 mm for carbon ion beams. For the 2 modulated proton spread-out Bragg peaks, measured differences in distal dose falloff were ≤0.5 mm against calculated values. The detector is stable, linearly responding with dose, precise, and easy to handle for QA beam energy checks of proton and carbon ion beams.
收起
展开
DOI:
10.14338/IJPT-19-00064.1
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(113)
参考文献(19)
引证文献(5)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无