In situ photoreduction of structural Fe(III) in a metal-organic framework for peroxydisulfate activation and efficient removal of antibiotics in real wastewater.
摘要:
Structural Fe(III) is widely found in various coordination complexes and inorganic compounds. In this work, a typical Fe-based metal organic framework (MOF) (viz. MIL-100(Fe)) was chosen as an example in the activation of peroxydisulfate (PDS) for the removal of antibiotic pollutants. Interestingly, an auto-acceleration effect was observed in the process of MIL-100(Fe) activating PDS aided by visible light irradiation. Compared to the processes with MIL-100(Fe)-activated PDS alone and the photo-activated PDS alone, the degradation efficiency of sulfamethoxazole (SMX) obtained in the visible light assisted PDS activation by MIL-100(Fe) process was enhanced by 2.1 and 5.6 times, respectively. Therein, the photogenerated electrons from MIL-100(Fe) carried out an in situ reduction of the surface structural Fe(III) to form Fe(II), which in turn significantly improved the PDS activation efficiency in the generation of ·OH and O2-· radicals for the removal of SMX. The degradation pathways of SMX were deduced based on the experimental results and theoretical calculations. Acute toxicity estimation indicated the formation of less toxic products after the treatment of SMX. Additionally, degradation of five antibiotics in the real wastewater were investigated to further confirm the advantages of such in situ photoreduced structural Fe(III) in MOFs to activate the PDS process.
收起
展开
DOI:
10.1016/j.jhazmat.2019.121996
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(216)
参考文献(0)
引证文献(5)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无