Integrated Bioinformatics Analysis Identifies Hub Genes Associated with the Pathogenesis and Prognosis of Esophageal Squamous Cell Carcinoma.

来自 PUBMED

作者:

Zhang HZhong JTu YLiu BChen ZLuo YTang YXiao FZhong J

展开

摘要:

Esophageal squamous cell carcinoma (ESCC) accounts for over 90% of all esophageal tumors. However, the molecular mechanism underlying ESCC development and prognosis remains unclear, and there are still no effective molecular biomarkers for diagnosing or predicting the clinical outcome of patients with ESCC. Here, using bioinformatics analyses, we attempted to identify potential biomarkers and therapeutic targets for ESCC. Differentially expressed genes (DEGs) between ESCC and normal esophageal tissue samples were obtained through comprehensive analysis of three publicly available gene expression profile datasets from the Gene Expression Omnibus database. The biological roles of the DEGs were identified by Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Moreover, the Cytoscape 3.7.1 platform and subsidiary tools such as Molecular Complex Detection (MCODE) and CytoHubba were used to visualize the protein-protein interaction (PPI) network of the DEGs and identify hub genes. A total of 345 DEGs were identified between normal esophageal and ESCC samples, which were enriched in the KEGG pathways of the cell cycle, endocytosis, pancreatic secretion, and fatty acid metabolism. Two of the highest scoring models were selected from the PPI network using Molecular Complex Detection. Moreover, CytoHubba revealed 21 hub genes with a valuable influence on the progression of ESCC in these patients. Among these, the high expression levels of five genes-SPP1, SPARC, BGN, POSTN, and COL1A2-were associated with poor disease-free survival of ESCC patients, as indicated by survival analysis. Taken together, we identified that elevated expression of five hub genes, including SPP1, is associated with poor prognosis in ESCC patients, which may serve as potential prognostic biomarkers or therapeutic target for ESCC.

收起

展开

DOI:

10.1155/2019/2615921

被引量:

19

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(985)

参考文献(43)

引证文献(19)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读