Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method.

来自 PUBMED

作者:

Qu YHZhu HTCao KLi XTYe MSun YS

展开

摘要:

The aim of the study was to develop a deep learning (DL) algorithm to evaluate the pathological complete response (pCR) to neoadjuvant chemotherapy in breast cancer. A total of 302 breast cancer patients in this retrospective study were randomly divided into a training set (n = 244) and a validation set (n = 58). Tumor regions were manually delineated on each slice by two expert radiologists on enhanced T1-weighted images. Pathological results were used as ground truth. Deep learning network contained five repetitions of convolution and max-pooling layers and ended with three dense layers. The pre-NAC model and post-NAC model inputted six phases of pre-NAC and post-NAC images, respectively. The combined model used 12 channels from six phases of pre-NAC and six phases of post-NAC images. All models above included three indexes of molecular type as one additional input channel. The training set contained 137 non-pCR and 107 pCR participants. The validation set contained 33 non-pCR and 25 pCR participants. The area under the receiver operating characteristic (ROC) curve (AUC) of three models was 0.553 for pre-NAC, 0.968 for post-NAC and 0.970 for the combined data, respectively. A significant difference was found in AUC between using pre-NAC data alone and combined data (P < 0.001). The positive predictive value of the combined model was greater than that of the post-NAC model (100% vs. 82.8%, P = 0.033). This study established a deep learning model to predict PCR status after neoadjuvant therapy by combining pre-NAC and post-NAC MRI data. The model performed better than using pre-NAC data only, and also performed better than using post-NAC data only. Significant findings of the study. It achieved an AUC of 0.968 for pCR prediction. It showed a significantly greater AUC than using pre-NAC data only. What this study adds This study established a deep learning model to predict PCR status after neoadjuvant therapy by combining pre-NAC and post-NAC MRI data.

收起

展开

DOI:

10.1111/1759-7714.13309

被引量:

35

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(509)

参考文献(18)

引证文献(35)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读