Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study.

来自 PUBMED

摘要:

The Gleason score is the strongest correlating predictor of recurrence for prostate cancer, but has substantial inter-observer variability, limiting its usefulness for individual patients. Specialised urological pathologists have greater concordance; however, such expertise is not widely available. Prostate cancer diagnostics could thus benefit from robust, reproducible Gleason grading. We aimed to investigate the potential of deep learning to perform automated Gleason grading of prostate biopsies. In this retrospective study, we developed a deep-learning system to grade prostate biopsies following the Gleason grading standard. The system was developed using randomly selected biopsies, sampled by the biopsy Gleason score, from patients at the Radboud University Medical Center (pathology report dated between Jan 1, 2012, and Dec 31, 2017). A semi-automatic labelling technique was used to circumvent the need for manual annotations by pathologists, using pathologists' reports as the reference standard during training. The system was developed to delineate individual glands, assign Gleason growth patterns, and determine the biopsy-level grade. For validation of the method, a consensus reference standard was set by three expert urological pathologists on an independent test set of 550 biopsies. Of these 550, 100 were used in an observer experiment, in which the system, 13 pathologists, and two pathologists in training were compared with respect to the reference standard. The system was also compared to an external test dataset of 886 cores, which contained 245 cores from a different centre that were independently graded by two pathologists. We collected 5759 biopsies from 1243 patients. The developed system achieved a high agreement with the reference standard (quadratic Cohen's kappa 0·918, 95% CI 0·891-0·941) and scored highly at clinical decision thresholds: benign versus malignant (area under the curve 0·990, 95% CI 0·982-0·996), grade group of 2 or more (0·978, 0·966-0·988), and grade group of 3 or more (0·974, 0·962-0·984). In an observer experiment, the deep-learning system scored higher (kappa 0·854) than the panel (median kappa 0·819), outperforming 10 of 15 pathologist observers. On the external test dataset, the system obtained a high agreement with the reference standard set independently by two pathologists (quadratic Cohen's kappa 0·723 and 0·707) and within inter-observer variability (kappa 0·71). Our automated deep-learning system achieved a performance similar to pathologists for Gleason grading and could potentially contribute to prostate cancer diagnosis. The system could potentially assist pathologists by screening biopsies, providing second opinions on grade group, and presenting quantitative measurements of volume percentages. Dutch Cancer Society.

收起

展开

DOI:

10.1016/S1470-2045(19)30739-9

被引量:

237

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(585)

参考文献(0)

引证文献(237)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读