Urinary organophosphate ester concentrations in relation to ultra-processed food consumption in the general US population.

来自 PUBMED

作者:

Kim HRebholz CMWong EBuckley JP

展开

摘要:

Ultra-processed foods are highly processed foods which are manufactured with industrial substances to increase convenience and palatability. Some organophosphate esters (OPEs) are used as flame retardants and plasticizers and have been detected in food samples, particularly processed foods. However, little is known about dietary sources of OPEs or whether higher consumption of ultra-processed foods increases exposures. We evaluated whether higher consumption of ultra-processed food is associated with urinary OPE metabolite concentrations in a nationally representative sample of US children and adults. Among 2242 participants (≥6 years) in the National Health and Nutrition Examination Survey (NHANES) 2013-2014, we used the NOVA classification system to calculate percent of total energy from ultra-processed food using a 24 h dietary recall. Concentrations of 7 OPE metabolites, including diphenyl phosphate (DPHP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), bis(2-chloroethyl) phosphate (BCEP), dibutyl phosphate (DBUP), di-p-cresyl phosphate (DPCP), 2,3,4,5-tetrabromobenzoic acid (TBBA), and bis(1-chloro-2-propyl) phosphate (BCPP) were measured in urine. We used multivariable linear or logistic regressions to examine associations per 10% higher total energy from ultra-processed foods with percent changes or prevalence of detectable levels of creatinine-standardized OPEs. In a model adjusting for only urinary creatinine, each 10% higher total energy from ultra-processed food was associated with 3.5% (95% CI: 0.7%, 6.3%) higher DPHP and 8.2% (95% CI: 4.6, 11.9%) higher BDCPP concentrations. However, none of the OPE metabolites was associated with ultra-processed food consumption in models adjusted for sociodemographic characteristics, health behaviors, and BMI (all p-values >0.05). Ultra-processed breads and tortillas; sauces, dressing, and gravies; and milk-based drinks were associated with higher concentrations of BDCPP while frozen and shelf-stable plate meals were associated with lower concentrations. Reconstituted meat or fish products and ultra-processed milk-based desserts were associated with greater odds of detectable levels of BCPP. While some food groups were associated with urinary OPE metabolite concentrations, ultra-processed foods do not appear to be a major source of current OPE exposure in the US.

收起

展开

DOI:

10.1016/j.envres.2019.109070

被引量:

13

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(269)

参考文献(46)

引证文献(13)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读