Monitoring treatment efficacy and resistance in breast cancer patients via circulating tumor DNA genomic profiling.

来自 PUBMED

作者:

Chen ZSun TYang ZZheng YYu RWu XYan JShao YWShao XCao WWang X

展开

摘要:

One of the major challenges in managing invasive breast cancer (BC) is the lack of reliable biomarkers to track response. Circulating tumor DNA (ctDNA) from liquid biopsy, as a candidate biomarker, provides a valuable assessment of BC patients. In this retrospective study, we evaluated the utility of ctDNA to reflect the efficacy of treatment and to monitor resistance mechanisms. Targeted next-generation sequencing (NGS) of 416 cancer-relevant genes was performed on 41 plasma biopsy samples of 19 HER2+ and 12 HER2- BC patients. Longitudinal ctDNA samples were analyzed in three BC patients over the treatment course for detecting acquired mutations. In HER2+ BC patients, ERBB2 somatic copy numbers in ctDNA samples were significantly higher in patients progressed on HER2-targeted therapy than those who were still responding to the treatment. Recurrent acquired mutations were detected in genes including ERBB2, TP53, EGFR, NF1, and SETD2, which may contribute to trastuzumab resistance. In longitudinal analyses, the observed mutation allele frequencies were tracked closely in concordance with treatment responses. A novel ERBB2 p.(Leu869Arg) mutation was acquired in one patient upon resistant to trastuzumab therapy, which was further validated as an oncogenic mutation in vitro and contributed to resistance. In HER2- BC patients with chemotherapy resistance, genetic alterations on TP53, PIK3CA, and DNA damage repair genes were frequently observed. In summary, ctDNA monitoring, particularly longitudinal analyses, provides valuable insights into the assessment of targeted therapy efficacy and gene alterations underlying trastuzumab resistance and chemotherapy resistance in HER2+ and HER2- BC patients, respectively.

收起

展开

DOI:

10.1002/mgg3.1079

被引量:

16

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(471)

参考文献(45)

引证文献(16)

来源期刊

Molecular Genetics & Genomic Medicine

影响因子:2.471

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读