Identification of microplastics in the sediments of southern coasts of the Caspian Sea, north of Iran.

来自 PUBMED

作者:

Mehdinia ADehbandi RHamzehpour ARahnama R

展开

摘要:

Microplastic (MPs) pollution in the aquatic and terrestrial environments has caught many attentions in the scientific literatures. Currently, no information is available about MPs pollution in Caspian Sea, the largest lake in the world. This study indicates the first report on the MPs pollution in the sediments of the southern Caspian coastal zones, northern Iran. Density separation method was conducted on 17 surficial sediments. The combination of observation techniques including SEM-EDS analysis, polarized light microscopy and Raman micro-spectroscopy were used to identify MPs. The abundance and size of microplastics in the samples ranged between 25 and 330 items/kg and 250-500 μm, respectively. Fibers constituted the most common MPs shape and polystyrene (PS) and polyethylene (PE) were major polymer types in the samples. The distribution of MPs in the study area reflected a patchy and irregular spatial pattern implying that the higher MPs concentration are near mouth of permanent rivers and in the regions with higher level of the fishing and tourism activities. The results showed the wide occurrence of MPs in the sediments of the world's largest lake which extend the knowledge on MPs pollution in the marine system. We also recommend further research on microplastics in different compartments of Caspian Sea to inform policy discussions and the development of appropriate management responses.

收起

展开

DOI:

10.1016/j.envpol.2019.113738

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(664)

参考文献(0)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读