Effect of L-Carnitine Supplementation on Liver Enzymes: A Systematic Review and Meta-analysis of Randomized Controlled Trials.
Possible Hepato-protective effects of L-carnitine have been reported in previous studies. Present study was conducted to systematically review the efficacy of L-carnitine supplementation on liver enzymes.
The following databases were searched up to December 2018: PubMed, Scopus, ISI Web of Science, and the Cochrane library. Only randomized controlled trials (RCTs) evaluating the effects of L-carnitine supplementation on liver enzymes including alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) were included. Pooled effect size measured using random effect model (Dersimonian-Liard).
A total of 16 studies (including 1025 participants) were included in the present meta-analysis. Pooled analysis indicated that L-carnitine supplementation significantly decreased ALT (weighted mean difference (WMD): -10.729 IU/L, 95% CI: -13.787, -7.672, p <0.001; I2 = 95.9%), AST (WMD: -7.149 IU/L, 95% CI: -9.202, -5.096, p <0.001; I2 = 93.5%) and GGT (WMD: -7.395: IU/L, 95% CI: -9.171, -5.619, p <0.001; I2 = 80.1%). Subgroup analysis revealed that effect of L-carnitine supplementation on liver enzymes was not significant in normal weight and healthy subjects. Baseline BMI and health status were the potential source of heterogeneity.
L-carnitine supplementation showed beneficial hepato-protective effects on circulating liver enzymes.
Askarpour M
,Djafarian K
,Ghaedi E
,Sadeghi O
,Sheikhi A
,Shab-Bidar S
... -
《-》
The effects of carnitine supplementation on clinical characteristics of patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials.
The beneficial effects of carnitine supplementation on nonalcoholic fatty liver disease are unclear. We conducted a systematic review and meta-analysis to evaluate the effects of carnitine supplementation on liver function, lipid profile, body mass index, body weight, and homeostasis model assessment of insulin resistance in patients with nonalcoholic fatty liver disease.
A comprehensive search of PubMed, Web of Science, Scopus, Cochrane Library, and Google Scholar databases were performed. Only randomized placebo-controlled human studies that examined the effects of carnitine supplementation on liver function, lipid profile, body mass index, body weight, and homeostasis model assessment of insulin resistance up to September 2019 were included. Fixed effects or random-effects models were applied to compute the pooled effect size. Heterogeneity assessments were performed using Cochran's Q test and I-squared statistics. The quality of the studies was assessed using the Jaded scale.
A total of 5 articles were selected, including 334 individuals (167 in control and 167 in intervention groups). The results demonstrated that carnitine supplementation significantly reduced homeostasis model assessment of insulin resistance (HOMA-IR) (WMD: -0.91; 95 % CI: -1.11, -0.72; p < 0.001, I2 = 0.0 %) and the levels of aspartate aminotransferase (AST) (WMD: -16.62; 95 % CI: -28.11, -5.14; IU/l; p = 0.005, I2 = 93.5 %), alanine aminotransferase (ALT) (WMD: -33.39; 95 % CI: -45.13, -21.66; IU/l; p < 0.001, I2 = 93.4 %), and triglycerides (TG) (WMD: -22.13; 95 % CI: -38.91, -5.34; mg/dl; p = 0.01; I2 = 0.0 %). However, the results of the pooled effect size did not show any significant effect of carnitine supplementation on body mass index (BMI) (WMD: 0.07; 95 % CI: -0.15, 0.29; p = 0.55; I2 = 0.0 %), body weight (WMD: -0.28; 95 % CI: -2.23, 1.68; p = 0.78; I2 = 45.7 %), the levels of gamma-glutamyl transferase (γGT) (WMD: -11.31; 95 % CI: -24.35, 1.73; IU/l; p = 0.09, I2 = 61.1 %), cholesterol (WMD: -13.58; 95 % CI: -46.77, 19.60; mg/dl; p = 0.42; I2 = 94.9 %), high-density lipoprotein-cholesterol (HDL-C) (WMD: 1.36; 95 % CI: -0.96, 3.68; mg/dl; p = 0.25; I2 = 64.7 %), and low density lipoprotein-cholesterol (LDL-C) (WMD: -14.85; 95 % CI: -45.43, 15.73; mg/dl; p = 0.34; I2 = 96.4 %).
This analysis shows that carnitine supplementation for patients with nonalcoholic fatty liver disease demonstrates a reduction in AST, ALT, TG levels and HOMA-IR. However, no significant effect of carnitine supplementation was observed on BMI, body weight, the levels of γGT, TC, HDL-cholesterol and LDL-cholesterol.
Abolfathi M
,Mohd-Yusof BN
,Hanipah ZN
,Mohd Redzwan S
,Yusof LM
,Khosroshahi MZ
... -
《-》
Does turmeric/curcumin supplementation improve serum alanine aminotransferase and aspartate aminotransferase levels in patients with nonalcoholic fatty liver disease? A systematic review and meta-analysis of randomized controlled trials.
We performed a meta-analysis to evaluate the efficacy of turmeric/curcumin supplementation on serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in patients with nonalcoholic fatty liver disease (NAFLD). We searched PubMed, Scopus, Cochrane Library, ISI Web of Science, and Google Scholar up to November 20, 2018. Studies that examined the effect of turmeric/curcumin on serum concentrations of ALT and AST among patients with NAFLD were included. The mean difference and standard deviation (SD) of changes in ALT and AST between intervention and control groups were used as effect size for the meta-analysis. A total of six randomized controlled trials (RCTs) were eligible for meta-analysis. Results from pooled analysis revealed that turmeric/curcumin supplementation reduced ALT (MD: -7.31 UL/L, 95% CI [-13.16, -1.47], p = 0.014) and AST (MD: -4.68 UL/L, 95% CI [-8.75 -0.60], p = 0.026). When RCTs stratified on the basis of their treatment duration, the significant reduction in serum concentrations of ALT and AST was observed only in studies lasting less than 12 weeks. This review suggests that turmeric/curcumin might have a favorable effect on serum concentrations of ALT and AST in patients with NAFLD. However, further clinical trials are needed to confirm these findings.
Goodarzi R
,Sabzian K
,Shishehbor F
,Mansoori A
... -
《-》