B cell-derived anti-beta 2 glycoprotein I antibody contributes to hyperhomocysteinaemia-aggravated abdominal aortic aneurysm.

来自 PUBMED

作者:

Shao FMiao YZhang YHan LMa XDeng JJiang CKong WXu QFeng JWang X

展开

摘要:

Overactivated B cells secrete pathological antibodies, which in turn accelerate the formation of abdominal aortic aneurysms (AAAs). Hyperhomocysteinaemia (HHcy) aggravates AAA in mice; however, the underlying mechanisms remain largely elusive. In this study, we further investigated whether homocysteine (Hcy)-activated B cells produce antigen-specific antibodies that ultimately contribute to AAA formation. ELISA assays showed that HHcy induced the secretion of anti-beta 2 glycoprotein I (anti-β2GPI) antibody from B cells both in vitro and in vivo. Mechanistically, Hcy increased the accumulation of various lipid metabolites in B cells tested by liquid chromatography-tandem mass spectrometry, which contributed to elevated anti-β2GPI IgG secretion. By using the toll-like receptor 4 (TLR4)-specific inhibitor TAK-242 or TLR4-deficient macrophages, we found that culture supernatants from Hcy-activated B cells and HHcy plasma IgG polarized inflammatory macrophages in a TLR4-dependent manner. In addition, HHcy markedly increased the incidence of elastase- and CaPO4-induced AAA in male BALB/c mice, which was prevented in μMT mice. To further determine the importance of IgG in HHcy-aggravated AAA formation, we purified plasma IgG from HHcy or control mice and then transferred the IgG into μMT mice, which were subsequently subjected to elastase- or CaPO4-induced AAA. Compared with μMT mice that received plasma IgG from control mice, μMT mice that received HHcy plasma IgG developed significantly exacerbated elastase- or CaPO4-induced AAA accompanied by increased elastin degradation, MMP2/9 expression, and anti-β2GPI IgG deposition in vascular lesions, as shown by immunofluorescence histochemical staining. Our findings reveal a novel mechanism by which Hcy-induced B cell-derived pathogenic anti-β2GPI IgG might, at least in part, contribute to HHcy-aggravated chronic vascular inflammation and AAA formation.

收起

展开

DOI:

10.1093/cvr/cvz288

被引量:

12

年份:

2020

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(228)

参考文献(0)

引证文献(12)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读