miR-145-5p restrained cell growth, invasion, migration and tumorigenesis via modulating RHBDD1 in colorectal cancer via the EGFR-associated signaling pathway.

来自 PUBMED

作者:

Niu YZhang JTong YLi JLiu B

展开

摘要:

miR-145-5p has been reported to be downregulated and described functioning as a tumor suppressive gene in colorectal cancer (CRC), yet its detailed regulatory function and mechanism in malignant progression of the disease have not been thoroughly understood. In our study, miR-145-5p and rhomboid domain containing 1 (RHBDD1) in CRC tissues and cells were examined by qRT-PCR and western blot. MTT, colony formation, wound healing, Transwell invasion, and flow cytometry assays were performed to evaluate the malignant phenotypes of CRC cells. Xenograft tumor, qRT-PCR, and western blot assays were applied to validate the roles and mechanism of miR-145-5p in CRC in vivo. The interaction between miR-145-5p and RHBDD1 was investigated by luciferase reporter assay and western blot. The changes of the EGFR/Raf/MEK/ERK pathway were detected by western blot. We found miR-145-5p was lowly expressed and low miR-145-5p predicted poor prognosis in CRC, while RHBDD1 was greatly enhanced in CRC cells and tissues. RHBDD1 silencing resulted in inhibiting cell proliferative, invasive, and migratory potentials as well as elevating apoptotic ones in CRC cells. miR-145-5p was inversely related with RHBDD1 expression in CRC tissues. miR-145-5p was found to directly bind to RHBDD1 and restrained its expression in CRC cells. miR-145-5p overexpression repressed CRC cell proliferation, invasion, migration and induced apoptosis, and these effects were reversed by RHBDD1 upregulation. Moreover, in CRC xenograft tumor, its growth was impeded by miR-145-5p via suppressing RHBDD1. Furthermore, miR-145-5p inhibited the expression of EGFR, p-MEK1/2 and p-ERK1/2, in vitro and in vivo by targeting RHBDD1. In conclusion, our study revealed that miR-145-5p overexpression inhibited tumorigenesis in CRC by downregulating RHBDD1 via suppressing the EGFR-associated signaling pathway (EGFR/Raf/MEK/ERK cascades).

收起

展开

DOI:

10.1016/j.biocel.2019.105641

被引量:

29

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1366)

参考文献(0)

引证文献(29)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读