Combining multi-population datasets for joint genome-wide association and meta-analyses: The case of bovine milk fat composition traits.

来自 PUBMED

作者:

Gebreyesus GBuitenhuis AJPoulsen NAVisker MHPWZhang Qvan Valenberg HJFSun DBovenhuis H

展开

摘要:

In genome-wide association studies (GWAS), sample size is the most important factor affecting statistical power that is under control of the investigator, posing a major challenge in understanding the genetics underlying difficult-to-measure traits. Combining data sets available from different populations for joint or meta-analysis is a promising alternative to increasing sample sizes available for GWAS. Simulation studies indicate statistical advantages from combining raw data or GWAS summaries in enhancing quantitative trait loci (QTL) detection power. However, the complexity of genetics underlying most quantitative traits, which itself is not fully understood, is difficult to fully capture in simulated data sets. In this study, population-specific and combined-population GWAS as well as a meta-analysis of the population-specific GWAS summaries were carried out with the objective of assessing the advantages and challenges of different data-combining strategies in enhancing detection power of GWAS using milk fatty acid (FA) traits as examples. Gas chromatography (GC) quantified milk FA samples and high-density (HD) genotypes were available from 1,566 Dutch, 614 Danish, and 700 Chinese Holstein Friesian cows. Using the joint GWAS, 28 additional genomic regions were detected, with significant associations to at least 1 FA, compared with the population-specific analyses. Some of these additional regions were also detected using the implemented meta-analysis. Furthermore, using the frequently reported variants of the diacylglycerol acyltransferase 1 (DGAT1) and stearoyl-CoA desaturase (SCD1) genes, we show that significant associations were established with more FA traits in the joint GWAS than the remaining scenarios. However, there were few regions detected in the population-specific analyses that were not detected using the joint GWAS or the meta-analyses. Our results show that combining multi-population data set can be a powerful tool to enhance detection power in GWAS for seldom-recorded traits. Detection of a higher number of regions using the meta-analysis, compared with any of the population-specific analyses also emphasizes the utility of these methods in the absence of raw multi-population data sets to undertake joint GWAS.

收起

展开

DOI:

10.3168/jds.2019-16676

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(302)

参考文献(0)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读