Effects of environmental and lifestyle exposures on urinary levels of polycyclic aromatic hydrocarbon metabolites: A cross-sectional study of urban adults in China.

来自 PUBMED

作者:

Cao LWang DWen YHe HChen AHu DTan AShi TZhu KMa JZhou YChen W

展开

摘要:

Urinary polycyclic aromatic hydrocarbon (PAH) metabolites, biomarkers of internal PAH exposure, are commonly used to explore the effects of PAH on human health. However, the correlation between environmental PAH exposure and the species or levels of urinary PAH metabolites remains unclear. We collected detailed information on PAH exposure sources, including cigarette smoking, cooking, traffic and diet habits via structured questionnaires, and determined 12 urinary monohydroxylated PAH metabolites (OH-PAHs) among 4092 participants from the Wuhan-Zhuhai cohort. Linear mixed models and generalized linear models were conducted to explore the associations of urinary metabolite levels with single or multiple PAH exposure sources. We also calculated the standardized regression coefficients to further compare the contributions of different sources to urinary OH-PAH levels. Our results showed that increasing levels of urinary 1-, 2-hydroxynaphthalene (1-, 2- OHNa) and 2-hydroxyfluorene (2-OHFlu) were significantly correlated with tobacco smoking (all P < 0.01). The concentrations of 1-, 2- OHNa and 9-hydroxyfluorene (9-OHFlu) were positively correlated with dietary intake (all P < 0.05). Individuals who spent a long time in traffic showed elevated levels of 9-OHFlu and 1-hydroxyphenanthrene (1-OHPh) compared with individuals who spent a short time in traffic (all P < 0.05). Self-cooking was associated only with elevated 1-hydroxypyrene (1-OHP) levels. Moreover, good kitchen ventilation resulted in significantly decreased urinary low-molecular-weight OH-PAH levels. These findings suggested that cigarette smoking, self-cooking, high dietary PAH intake and a long time spent in traffic were associated with increased levels of specific urinary PAH metabolites, and good kitchen ventilation effectively reduced the exposure to low-molecular-weight PAHs in self-cooking participants.

收起

展开

DOI:

10.1016/j.chemosphere.2019.124898

被引量:

11

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(388)

参考文献(0)

引证文献(11)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读