Bovine non-competent oocytes (BCB-) negatively impact the capacity of competent (BCB+) oocytes to undergo in vitro maturation, fertilisation and embryonic development.
Competent oocyte selection remains a bottleneck in the in vitro production (IVP) of mammalian embryos. Among the vital assays described for selecting competent oocytes for IVP, the brilliant cresyl blue (BCB) test has shown consistent results. The aim of the first experiment was to observe if oocytes directly submitted to IVM show similar cleavage and blastocyst rates as those obtained with oocytes maintained under the same in vitro conditions as the oocytes that undergo the BCB test. Bovine cumulus-oocyte complexes (COCs) were recovered from slaughterhouse-derived ovaries and, after morphological evaluation, were randomised grouped into three groups: (1) directly submitted to IVM; (2) oocytes submitted to the BCB test without the addition of BCB stain (BCB control group); and (3) submitted to the BCB test. The results showed that oocytes directly submitted to IVM reached similar cleavage (48/80 - 60%) and embryonic development rates to the blastocyst stage (10/48 - 21%) as the results obtained with the BCB control group oocytes (45/77 - 58% and 08/45 - 18%, respectively). The aim of the second experiment was to determine the cleavage and blastocyst rates obtained from BCB+ oocytes undergoing IVM in the presence of BCB- oocytes at a ratio of 10:1. COCs were recovered from slaughterhouse-derived ovaries and, after morphological evaluation, were randomised into two groups that were submitted to IVM either directly (1: control group) or submitted to the BCB test prior to IVM. After the BCB test, the COCs were classified as either BCB+ (blue cytoplasm) or BCB- (colourless cytoplasm) and then divided into four experimental groups: (2) BCB+; (3) BCB-; and (4) BCB+ matured in same IVM medium drop as (5) BCB- at a ratio of 10:1. After IVM (24 h), oocytes from the different experimental groups were submitted to in vitro fertilisation (IVF) and in vitro culture (IVC) under the same culture conditions until they reached the blastocyst stage (D7). With regards to the cleavage rate (48 h after IVF), only group 3 (102/229 - 44%) differed (P < 0.05) from the other groups [1 (145/241 - 60%); 2 (150/225 - 67%); 4 (201/318 - 63%) and 5 (21/33 - 63%)]. On day 7, the embryos from group 2 (BCB+) achieved the highest blastocyst rate (46/150 - 31%) (P < 0.05) when compared with the embryo development capacity of the other experimental groups (1: 31/145 - 21%; group 3: 17/102 - 17%; group 4: 46/201 - 23%; and group 5: 2/21 - 10%). In conclusion, submitting BCB+ oocytes that were separated from BCB- oocytes to IVM increases the rate of embryonic development to the blastocyst stage when compared to the control group, BCB- oocyte group, BCB+ paracrine group and BCB- paracrine group. The presence of non-competent oocytes during IVM, even in low proportion (1:10), reduces the capacity of competent oocytes to undergo embryo development and achieve blastocyst stage during IVC.
Salviano MB
,Collares FJ
,Becker BS
,Rodrigues BA
,Rodrigues JL
... -
《-》
A pre-in vitro maturation medium containing cumulus oocyte complex ligand-receptor signaling molecules maintains meiotic arrest, supports the cumulus oocyte complex and improves oocyte developmental competence.
Can a pre-in vitro maturation (pre-IVM) medium containing signaling molecules rather than chemical/pharmaceutical agents, sustain meiotic arrest and improve developmental competence of in vitro matured oocytes in CF1 outbred mice?
A short 2 h period of pre-IVM prevents spontaneous meiotic resumption, improves mitochondria activity in subsequently matured oocytes, and increases developmental competence, pregnancy rate and implantation of resulting embryos.
Spontaneous resumption of meiosis in vitro is detrimental for oocyte developmental competence. Pre-IVM systems that prevent spontaneous meiotic resumption with chemical/pharmaceutical agents are a promising approach to improving IVM oocyte competence; however, the success of these methods has proven to be inconsistent.
This study consisted of a series of experiments using cumulus oocyte complexes (COC) derived from outbred mice following ovarian stimulation. The study was designed to examine if a novel, ligand/receptor-based pre-IVM treatment could sustain meiotic arrest in vitro and improve oocyte developmental competence, compared to control IVM. Two pre-IVM durations (2 h and 24 h) were evaluated, and the effect of the mitochondrial stimulator PQQ during 24 h pre-IVM was studied.
Murine (outbred CF1) immature COC were cultured in vitro in the presence of C-type natriuretic peptide (CNP) (30 nM), estradiol (100 nM), FSH (1 × 10-4 IU/ml) and bone morphogenic protein 15 (BMP15) (100 ng/ml) for 2 h or 24 h prior to IVM. Meiotic status during pre-IVM and IVM was analyzed using orcein staining, and functionality of gap junction communication was confirmed using the functional gap junction inhibitor carbenoxolone (CBX). Oocytes exposed to pre-IVM treatment were compared to control oocytes collected on the same day from the same females and undergoing standard IVM. Developmental competence and embryo viability was assessed by oocyte mitochondrial activity and ATP concentration, in vitro embryo development following IVF and in vitro culture, blastocyst cell number and allocation, embryo morphokinetics, and embryo transfer. Differences were determined to be significant when P < 0.05.
Both a short (2 h) and long (24 h) pre-IVM period successfully prevented spontaneous resumption of meiosis. Moreover, gap junctions remained open during the pre-IVM period, as shown by the resumption of meiosis (95.9 ± 2.1%) in the presence of CBX during pre-IVM. A 2 h pre-IVM treatment improved blastocyst development after 96 h of culture per cleaved embryo compared to control (71.9 ± 7.4% versus 53.3 ± 6.2%, respectively), whereas a longer 24 h pre-IVM had no effect on development. A short 2 h period of pre-IVM increased mitochondrial activity in mature oocytes. On the contrary, mitochondrial activity was reduced in mature oocytes following 24 h of arrest and IVM. Treatment of arrested COC with pyrroloquinoline quinone (PQQ) during the 24 h pre-IVM period successfully maintained mitochondrial activity equal to control. However, PQQ was not able to improve blastocyst development compared to pre-IVM 24 h without PQQ. Moreover, ATP concentration in mature oocytes following pre-IVM and/or IVM, did not differ between treatments. A 2 h pre-IVM period prior to IVM improved pregnancy rate following transfer to recipient females. Implantation was also improved after transfer of embryos derived from oocytes arrested for either 2 h or 24 h prior to IVM, compared to control IVM derived embryos (41.9 ± 9%, 37.2 ± 9.5% and 17.2 ± 8.3%, respectively), although fetal development did not differ.
Slower meiotic resumption and enhanced mitochondrial activity likely contribute to improved developmental competence of oocytes exposed to pre-IVM for 2 h, but further experiments are required to identify specific mechanisms. Maintaining oocytes in meiotic arrest for 24 h with this approach could be a potential window to improve oocyte quality. However, an initial attempt to utilize this period of arrest to manipulate quality with PQQ, a mitochondrial stimulator, did not improve oocyte competence.
IVM could be an attractive clinical alternative to conventional IVF, with reduced time, cost and reliance on high doses of exogenous hormones to stimulate follicle growth, thus eliminating ovarian hyperstimulation syndrome (OHSS). Currently IVM is not widely used as it results in reduced embryo development and lower pregnancy outcomes compared to embryos produced from in vivo matured oocytes. Our approach to IVM, incorporating a ligand/receptor pre-IVM period, could improve human oocyte quality following IVM leading to routine adoption of this patient friendly technology. In addition, our methodology of pre-IVM containing signaling molecules rather than chemical/pharmaceutical agents may prove to be more consistent at improving oocyte quality than those focusing only on cAMP modulation with pharmacological agents. Finally, a reliable method of maintaining oocytes in meiotic arrest in vitro provides a novel window of opportunity in which the oocyte may be manipulated to address specific physiological deficiencies prior to meiotic resumption.
N/A.
This study was supported by the Colorado Center for Reproductive Medicine (CCRM, Lone Tree, Colorado USA). We declare no conflict of interest.
Santiquet NW
,Greene AF
,Becker J
,Barfield JP
,Schoolcraft WB
,Krisher RL
... -
《-》
Seasonal variations in developmental competence and relative abundance of gene transcripts in buffalo (Bubalus bubalis) oocytes.
Hot season is a major constraint to production and reproduction in buffaloes. The present work aimed to investigate the effect of season on ovarian function, developmental competence, and the relative abundance of gene expression in buffalo oocytes. Three experiments were conducted. In experiment 1, pairs of buffalo ovaries were collected during cold season (CS, autumn and winter) and hot season (HS, spring and summer), and the number of antral follicles was recorded. Cumulus oocyte complexes (COCs) were aspirated and evaluated according to their morphology into four Grades. In experiment 2, Grade A and B COCs collected during CS and HS were in vitro matured (IVM) for 24 hours under standard conditions at 38.5 °C in a humidified air of 5% CO2. After IVM, cumulus cells were removed and oocytes were fixed, stained with 1% aceto-orcein, and evaluated for nuclear configuration. In vitro matured buffalo oocytes harvested during CS or HS were in vitro fertilized (IVF) using frozen-thawed buffalo semen and cultured in vitro to the blastocyst stage. In experiment 3, buffalo COCs and in vitro matured oocytes were collected during CS and HS, and then snap frozen in liquid nitrogen for gene expression analysis. Total RNA was extracted from COCs and in vitro matured oocytes, and complementary DNA was synthesized; quantitative Reverse Transcription-Polymerase Chain Reaction was performed for eight candidate genes including GAPDH, ACTB, B2M, GDF9, BMP15, HSP70, and SOD2. The results indicated that HS significantly (P < 0.01) decreased the number of antral follicles and the number of COCs recovered per ovary. The number of Grade A, B, and C COCs was lower (P < 0.05) during HS than CS. In vitro maturation of buffalo oocytes during HS significantly (P < 0.01) reduced the number of oocytes reaching the metaphase II stage and increased the percentage of degenerated oocytes compared with CS. Oocytes collected during HS also showed signs of cytoplasmic degeneration. After IVF, cleavage rate was lower (P < 0.01) for oocytes collected during HS, and the percentage of oocytes arrested at the two-cell stage was higher (P < 0.01) than oocytes IVF during CS. Oocytes matured during CS showed a higher (P < 0.01) blastocyst rate than those matured during HS. Also, COCs recovered in HS showed significant (P < 0.05) upregulation of HSP70 mRNA expression compared with those recovered in CS. For in vitro matured oocytes, CS down regulated the transcript abundance of ACTB and upregulated GAPDH and HSP70 mRNA levels compared with HS condition. In conclusion, HS could impair buffalo fertility by reducing the number of antral follicles and oocyte quality. In vitro maturation of buffalo oocytes during HS impairs their nuclear and cytoplasmic maturation, fertilization, and subsequent embryo development to the morula and blastocyst stages. This could be in part because of the altered gene expression found in COCs and in vitro matured oocytes.
Abdoon AS
,Gabler C
,Holder C
,Kandil OM
,Einspanier R
... -
《-》