L-cysteine/hydrogen sulfide pathway induces cGMP-dependent relaxation of corpus cavernosum and penile arteries from patients with erectile dysfunction and improves arterial vasodilation induced by PDE5 inhibition.
摘要:
The aim was to evaluate and characterize H2S-induced relaxation of human corpus cavernosum (HCC) and penile resistance arteries (HPRA) from patients with erectile dysfunction (ED). HCC and HPRA were obtained from men with ED at the time of penile prosthesis insertion. H2S-mediated relaxations were evaluated by exposing these tissues to the stable analogue, NaHS, and to the precursor of H2S, L-cysteine (CYS). The effects of NaHS and CYS were also evaluated on cGMP accumulation in HCC and on acetylcholine- and sildenafil-mediated relaxations in HCC and HPRA. NaHS consistently relaxed HPRA and HCC and more potently than human prostate and bladder. NaHS-induced relaxations in HCC and HPRA were unaffected by the ATP-sensitive K+-channel blocker, glibenclamide or the NO synthase inhibitor, L-NAME, slightly reduced by the Ca2+-activated K+-channel blocker, tetraethylammonium, and markedly inhibited by the soluble guanylyl cyclase inhibitor, ODQ. NaHS caused a cGMP increase in HCC that was inhibited by ODQ. CYS produced relaxations of HCC and HPRA that were sensitive to ODQ and to inhibition of the H2S synthesizing enzymes, cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS). CYS also increased cGMP in HCC. In contrast to NaHS, CYS-induced relaxations were prevented by endothelium removal in HPRA. Only in HPRA, treatment with CYS (30 μM) potentiated acetylcholine- and sildenafil-induced relaxations. This effect was prevented by CSE/CBS inhibition and by removing the endothelium. Exogenous and endogenous H2S relaxes HCC and HPRA from ED patients through cGMP accumulation and potentiates vasodilatory capacity of PDE5 inhibition, supporting the therapeutic potential of modulating H2S pathway.
收起
展开
DOI:
10.1016/j.ejphar.2019.172675
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(191)
参考文献(0)
引证文献(8)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无