MicroRNA-23b alleviates neuroinflammation and brain injury in intracerebral hemorrhage by targeting inositol polyphosphate multikinase.
摘要:
Neuroinflammation plays a critical role in the pathogenesis of intracerebral hemorrhage (ICH), contributing to detrimental brain injury and neurological function deficits. MicroRNA-23b (miR-23b) exerts anti-inflammatory effects in many diseases and is downregulated in patients with ICH. This study aimed to evaluate the involvement of miR-23b in ICH models in vivo and in vitro, using basal ganglia injection of collagenase type VII in rats and hemin stimulation for cells, respectively. Exogenous overexpression of miR-23b by transfection with lentivirus-miR-23b (LV-miR-23b) or miR-23b mimics was evaluated by RT-qPCR. In this study, we found miR-23b was downregulated in the ICH models and its overexpression effectively alleviated neurological deficits, brain edema, hematoma area, and neuronal apoptosis in ICH rats. Western blotting for neuroinflammation markers and immunofluorescence staining for microglial activation demonstrated that miR-23b could alleviate neuroinflammation in ICH in vivo. We also performed an in vitro mechanism study using BV2 microglial cells and HT22 neuronal cell lines to explore how miR-23b modulates neuroinflammation and neuronal protection after ICH. We found that miR-23b significantly decreased hemin-stimulated inflammation response in BV2 cells and attenuated co-cultured HT22 neuronal cell death. Additionally, we verified that miR-23b suppressed inflammation in BV2 cells by targeting inositol polyphosphate multikinase (IPMK) and that autophagy regulation through the Akt/mTOR pathway was involved in miR-23b-regulated inflammation after ICH. Our study illustrated that miR-23b played a protective role in ICH through inhibiting neuroinflammation by targeting IPMK; this mechanism may be related to the regulation of the Akt/mTOR autophagy pathway, making it a potential target for ICH treatment.
收起
展开
DOI:
10.1016/j.intimp.2019.105887
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(553)
参考文献(0)
引证文献(20)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无