-
Helenalin from Centipeda minima ameliorates acute hepatic injury by protecting mitochondria function, activating Nrf2 pathway and inhibiting NF-κB activation.
Acute liver injury is a life-threatening syndrome that often caused by hepatocyte damage and is characterized by inflammatory and oxidative responses. Helenalin isolated from Centipeda minima (HCM) has been found to have anti-inflammatory and anti-oxidative effects. Here, this study aimed to investigate the effects and underlying mechanisms of HCM on Lipopolysaccharide/D-Galactosamine (LPS/D-GalN)-induced acute liver injury. Mice were intragastrically administered with various dose of HCM for 10 days; 2 h after the final treatment, the mice were injected with 50 μg/kg LPS and 800 mg/kg D-GalN. The histopathological changes, hepatocyte apoptosis, serum cytokines, oxidative stress and inflammatory cytokines were assessed. The results showed that HCM significantly ameliorated the hepatic injury, as evidenced by the attenuation of histopathological changes and the decrease in serum aminotransferase and total bilirubin activities. HCM markedly decreased hepatocyte apoptosis by modulating the mitochondria-dependent pathway, including the increase in the Bcl-2/Bax ratio, the inhibition of caspase-3, -8 and -9, and the inhibition of cytochrome C release. Moreover, HCM strongly alleviated oxidative stress, lipid peroxidation and reactive oxygen species (ROS) generation by activating the Nrf2 signaling pathway. In addition, HCM significantly attenuated inflammatory cytokines including TNF-α, IL6 and IL-1β as well as NO production by inhibiting TLR4 signaling transduction and NF-κB activation. In conclusion, HCM protects hepatocytes from damage induced by LPS/D-GalN, which may contribute to its ability to alleviate hepatocyte apoptosis by protecting the mitochondrial function, inhibit oxidative stress by activating the Nrf2 pathway, and attenuate inflammation by inhibiting NF-κB activation. This study demonstrates that HCM may be developed as a potential agent for the treatment of acute liver failure.
Li Y
,Zeng Y
,Huang Q
,Wen S
,Wei Y
,Chen Y
,Zhang X
,Bai F
,Lu Z
,Wei J
,Lin X
... -
《-》
-
Mitoxantrone attenuates lipopolysaccharide-induced acute lung injury via inhibition of NEDD8 activating enzyme.
Lipopolysaccharide (LPS) triggers the activation of nuclear factor kappa B (NF-κB) by interacting with Toll-like receptor 4 (TLR4), leading to the production of various proinflammatory enzymes and cytokines that are crucial in the development of acute lung injury (ALI). Mitoxantrone (MTX) has been demonstrated to mitigate the inflammatory response caused by LPS; however, its precise function in the context of ALI is not fully comprehended.
This study aimed to investigate the inhibitory effects and underlying mechanisms of MTX against LPS-induced ALI.
ALI was induced in C57BL/6 mice via a single intratracheal administration of LPS (5 mg/kg), followed by an intraperitoneal injection of MTX to evaluate its therapeutic potential. The effects of MTX on lung injury and the progression of inflammation in ALI mice were assessed using a comprehensive range of techniques, including hematoxylin-eosin (H&E) staining, immunohistochemistry (IHC), myeloperoxidase activity measurement, cell enumeration in bronchoalveolar lavage fluid (BALF), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Additionally, IHC, Western blotting, and co-immunoprecipitation were used to elucidate the specific signaling pathways and molecular mechanisms by which MTX exerted its anti-inflammatory effects in ALI mice. Surface plasmon resonance (SPR) and molecular docking were used to examine the target to which MTX binds directly to reduce inflammation. We also established a lung epithelial cell injury model using LPS-treated A549 cells. The polyubiquitination of IκBα and TRAF6 in LPS-induced A549 cells was detected through Western blotting following immunoprecipitation.
In mice with LPS-induced ALI, MTX exhibits anti-inflammatory effects by ameliorating histopathological abnormalities caused by LPS, reducing inflammatory cell infiltration, and decreasing the production of proinflammatory enzymes and cytokines. It has been observed that MTX directly binds to the NEDD8 activating enzyme (NAE), thereby inhibiting the transfer of NEDD8 to the substrates UBC12, Cul1, and Cul5. Consequently, the polyubiquitination of IκBα and TRAF6 is disrupted, leading to the suppression of TAK1 activation by TRAF6. This suppression of TAK1 activity hindered the phosphorylation of IKK and MAPK. By stabilizing IκBα through dephosphorylation via IKK inhibition and preventing polyubiquitination, NF-κB activation is reduced. This cascade of events ultimately leads to a reduction in the production of proinflammatory enzymes and cytokines, effectively mitigating the inflammatory response in ALI. In A549 cells, MTX reduces the LPS-induced K48-linked polyubiquitination of IκBα and K63-linked polyubiquitination of TRAF6. This process can be reversed by the overexpression of NEDD8. Additionally, treatment with MG-132, a proteasome inhibitor, can restore the polyubiquitination of IκBα that was inhibited by MTX.
These findings confirm the essential role of Cul1/5 neddylation in ALI and suggest that MTX could be a promising therapeutic agent for ALI.
Liu H
,Liu Y
,Lin X
,Fan J
,Huang Z
,Li A
... -
《-》
-
Nrf2-dependent hepatoprotective effect of ellagic acid in titanium dioxide nanoparticles-induced liver injury.
Wang K
,Hao Z
,Xie J
,Ma L
,Zhang W
,Mo J
,Li L
,Jin C
... -
《-》
-
Preventive effects of matrine on LPS-induced inflammation in RAW 264.7 cells and intestinal damage in mice through the TLR4/NF-κB/MAPK pathway.
Matrine is a tetracyclic quinolizidine alkaloid with diverse bioactive properties, including anti-inflammatory and neuroprotective properties. However, the underlying anti-inflammatory mechanisms remain unclear.
This study aimed to explore how matrine reduces Lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells and to assess its protective effects against LPS-induced intestinal damage.
The effect of matrine on cell viability was assessed using the cell counting kit-8 (CCK-8) assay. Additionally, its impact on inflammatory cytokines and macrophage polarization was assessed using enzyme-linked immunosorbent assay (ELISA), flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses. The effects on intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), nitric oxide (NO) production, and oxidative stress were evaluated using 2',7'-dichlorodihydrofluorescein diacetate staining and JC-1 and Griess assays. Immunofluorescence staining was used to observe the translocation of the NF-κB p65 subunit. Western blotting (WB) and qRT-PCR were employed to analyze the expression levels of proteins related to the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) pathway. An LPS-induced mouse model was established to study the intestinal inflammation and barrier injury. Mouse feces characteristics, colon length, and disease activity index (DAI) were recorded. Hematoxylin-eosin (H&E) and alcian blue/periodic acid schiff (AB/PAS) staining were used to observe morphological changes and barrier damage in the duodenum, jejunum, ileum, and colon and to measure villus length, crypt depth, goblet cell count, and positive areas in the duodenum, jejunum, and ileum. The content of short-chain fatty acids (SCFAs) in the colon was determined using gas chromatography (GC).
Matrine inhibited LPS-induced inflammatory cytokine levels, suppressed macrophage M1 polarization, and promoted M2 macrophage polarization. Matrine reduced LPS-induced increases in ROS and NO levels and regulates oxidative stress. Additionally, matrine inhibited the nuclear translocation of the NF-κB p65 subunit and exerted anti-inflammatory effects by suppressing the activation of the TLR4/NF-κB/MAPK pathway. In vivo experiments indicated that matrine significantly alleviated LPS-induced diarrhea, increased DAI, and shortened the colon. Matrine reduced the production of the pro-inflammatory cytokine interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α and the pro-inflammatory mediator NO in mouse intestinal tissues while promoting the content of the anti-inflammatory cytokine IL-10. Furthermore, it improved intestinal tissue structure and alleviated LPS-induced intestinal barrier damage. Finally, matrine increased the SCFA levels in the intestine.
Matrine exerted its anti-inflammatory effects and protects against intestinal injury through the TLR4/NF-κB/MAPK signaling pathway.
Mao N
,Yu Y
,Lu X
,Yang Y
,Liu Z
,Wang D
... -
《-》
-
Quercetin inhibits mitophagy-mediated apoptosis and inflammatory response by targeting the PPARγ/PGC-1α/NF-κB axis to improve acute liver failure.
Reactive oxygen species (ROS) from mitochondrial dysfunction are critical in triggering apoptosis and inflammation in acute liver failure (ALF). Quercetin (QUE), an antioxidant, is renowned for its therapeutic effects onliverdiseases. There are no studies on whether QUE regulates mitophagy level in hepatocytes to inhibit ALF.
This study investigates QUE's protective effects on ALF and elucidates the mechanisms involved.
The ALF and hepatocyte inflammatory injury model was established using LPS and D-Galn. To predict potential targets and mechanisms of QUE in ALF treatment, transcriptomics, network pharmacology, molecular docking techniques, and ChIP were employed. The expression level related to mitophagy, apoptosis, and signaling pathways were detected by CCK8, IHC, IF staining, TUNEL, RT-qPCR, TEM, Western blotting, ELISA, and flow cytometry.
Network pharmacology and transcriptomics revealed common targets between QUE and ALF. Enrichment analysis showed that the anti-ALF targets of QUE were significantly associated with mitochondria and NF-κB-related pathways. Subsequent experiments showed that QUE pretreatment significantly alleviated the loss of hepatocyte viability, enhanced mitochondrial membrane potential, activated mitophagy, and promoted the clearance of damaged mitochondria, thereby reducing ROS accumulation, significantly reducing cell apoptosis and inflammatory responses, reducing ALT and AST levels, and improving liver tissue pathology. Mechanistically, molecular docking, DARTS, and CETSA analyses confirmed that QUE directly binds to the PPARγ molecule, which reduced binding to IκB and significantly inhibit the NF-κB pathway to exert its protective effects.
In short, our results provide the first evidence that QUE improves acute liver failure by promoting mitophagy through regulating the PPARγ/PGC-1α/NF-κB axis and inhibiting apoptosis and inflammatory responses mediated by mitochondrial dysfunction, which provides evidence for the potential of QUE in the treatment of ALF.
Wu H
,Wu L
,Luo L
,Wu YT
,Zhang QX
,Li HY
,Zhang BF
... -
《-》