Predictive rules for optical diagnosis of < 10-mm colorectal polyps based on a dedicated software.

来自 PUBMED

作者:

Hassan CBisschops RBhandari PCoron ENeumann HPech OCorreale LRepici A

展开

摘要:

The BASIC classification for predicting in vivo colorectal polyp histology incorporates both surface and pit/vessel descriptor domains. This study aimed to define new BASIC classes for adenomatous and hyperplastic polyps. A video library (102 still images/videos of < 10-mm polyps using white-light [WLI] and blue-light imaging [BLI]) was reviewed by seven expert endoscopists. Polyps were rated according to the individual descriptors of the three BASIC domains (surface/pit/vessel). A model to predict polyp histology (adenomatous or hyperplastic) was developed using multivariable logistic regression and subsequent "leave-one-out" cross-validation. New BASIC rules were then defined by Delphi agreement. The overall accuracy of these rules when used by experts was evaluated according to the level of confidence and light type. The strength of prediction for adenomatous histology from 2175 observations assessed by area under the curve (AUC; 95 % confidence interval) was poor-to-fair for the surface descriptors (0.50 [0.33 - 0.69] for mucus; 0.68 [0.57 - 0.79] for irregular surface), but stronger for pits (0.87 [0.80 - 0.96] for featureless/round/not round) and vessels (0.80 [0.65 - 0.87] for not present/lacy/pericryptal). By combining the domains, a good-to-excellent prediction was shown (AUC 0.89 [0.81 - 0.96]). After the definition of new BASIC rules for adenomatous and hyperplastic polyps, accuracy for high confidence BLI predictions was 90.3 % (86.3 % - 93.2 %), which was superior to high confidence WLI (83.7 % [77.3 % - 87.7 %]) and low confidence BLI predictions (77.7 % [61.1 % - 88.6 %]). Based on the strength of prediction, the new BASIC classes for adenomatous and hyperplastic histology show favorable results for accuracy and confidence levels.

收起

展开

DOI:

10.1055/a-0995-0084

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(118)

参考文献(0)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读