Cu(II)-enhanced degradation of acid orange 7 by Fe(II)-activated persulfate with hydroxylamine over a wide pH range.

来自 PUBMED

作者:

Liu XYuan BZou JWu LDai LMa HLi KMa J

展开

摘要:

The activation of persulfate by Fe(II) coupled with hydroxylamine (the HA/Fe(II)/PS system) was highly effective for the degradation of refractory organic contaminants under acidic pH conditions. However, owing to the precipitation of ferric hydroxide and/or the slow reduction from Fe(III) to Fe(II), the HA/Fe(II)/PS system was invalid under neutral and alkaline pH conditions. In this study, it was observed that the degradation of acid orange 7 (AO7) was strongly enhanced over the wide pH range of 2-9 when trace Cu(II) (0.5-5 μM) was spiked into the HA/Fe(II)/PS system. It was evident that Cu(I) was generated via the reduction of Cu(II) by HA in the bimetallic system at both pH 3 and pH 8, and the steady concentration of Fe(II) in the bimetallic system was much higher than that in the HA/Fe(II)/PS system due to the rapid reaction between Fe(III) and Cu(I). Quenching experiments using tert-butyl alcohol, methanol and sodium bromide as the scavengers and electron spin resonance experiments confirmed that the primary reactive species responsible for AO7 degradation were sulfate radical at both pH 3 and pH 8, rather than hydroxyl radical and Cu(III). Nevertheless, sulfate radical was mainly produced by Fe(II)-activated PS at pH 3, while both Cu(I) and Fe(II) made important contributions to the generation of sulfate radical at pH 8. The bimetallic system was also highly effective in degrading other organic contaminants, such as phenol, diclofenac, reactive red 2 and orange G. This study might provide a promising idea based on Fe(II)-activated PS for degrading organic contaminants over a wide pH range.

收起

展开

DOI:

10.1016/j.chemosphere.2019.124533

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(414)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读