Hybrid silica-coated Gd-Zn-Cu-In-S/ZnS bimodal quantum dots as an epithelial cell adhesion molecule targeted drug delivery and imaging system.

来自 PUBMED

作者:

Akbarzadeh MBabaei MAbnous KTaghdisi SMPeivandi MTRamezani MAlibolandi M

展开

摘要:

Dual-modal imaging probes based on fluorescence (FL) and magnetic resonance (MR) modalities have attracted great attention due to their ability to combine the target specificity and high penetration into body tissues. In this study, we developed a potent nanocarrier with an effective photoluminescent emission and MR imaging capacity to deliver the doxorubicin to breast cancer 4T1 cells. The nanocarrier was fabricated by coating of quantum dots (QDs) with mesoporous silica followed by amine functionalization of the silica surface. Then, the doxorubicin was loaded into the silica pores and biheterofunctional PEG was covalently bound to the surface of core-shell quantum dot mesoporous silica nanoparticles. In order to target the DOX-loaded nanoparticles, the EpCAM DNA aptamer was attached on the surface of the DOX-loaded PEGylated nanoparticles. The synthesized NPs were analyzed for their size distribution, morphology, zeta potential and magnetic susceptibility using HRTEM, SEM and VSM analysis. The QD-encapsulated mesoporous silica revealed spherical shapes with an average particle size of 100 nm. The maximum encapsulation efficacy of doxorubicin in the silica pores was 25%. The in vitro release assessment demonstrated the pH-sensitive release of doxorubicin from the designed formulations. The in vitro cytotoxicity assays indicated that the aptamer targeted nanoparticles showed greater cytotoxicity than both non-targeted NPs and free DOX toward 4T1 and MCF-7 cell lines. The in vivo studies in 4T1 tumor-bearing Balb/c mice demonstrated that EpCAM aptamer could specifically deliver the DOX-loaded nanoparticles into the tumor tissue and cause remarkable inhibition of tumor growth as compared to non-targeted formulation and free DOX. Moreover, the in vivo MR and fluorescent imaging in 4T1 tumor-bearing mice confirmed the accumulation and residence of targeted system in tumor tissue even 24 h post-injection. This work presents a novel system for preparing bimodal imaging theranostic NPs through hybridization of silica and magnetic-fluorescent quantum dots.

收起

展开

DOI:

10.1016/j.ijpharm.2019.118645

被引量:

10

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(2281)

参考文献(0)

引证文献(10)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读