Radiogenomic association between the T2-FLAIR mismatch sign and IDH mutation status in adult patients with lower-grade gliomas: an updated systematic review and meta-analysis.
To reveal a radiogenomic correlation between the presence of the T2-fluid-attenuated inversion recovery resection (T2-FLAIR) mismatch sign on MR images and isocitrate dehydrogenase (IDH) mutation status in adult patients with lower-grade gliomas (LGGs).
A web-based systemic search for eligible literature up to April 13, 2021, was conducted on PubMed, Embase, and the Cochrane Library databases by two independent reviewers. This study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. We included studies evaluating the accuracy of the T2-FLAIR mismatch sign in diagnosing the IDH mutation in adult patients with LGGs. The T2-FLAIR mismatch sign was defined as a T2-hyperintense lesion that is hypointense on FLAIR except for a hyperintense rim.
Fourteen studies (n = 1986) were finally identified. The mean age of patients in the included studies ranged from 38.5 to 56 years. The pooled area under the curve (AUC), sensitivity, and specificity were obtained for each molecular profile: IDHmut-Codel: 0.46 (95% confidence interval [CI]: 0.42-0.50), 1% (95%CI: 0-7%), and 69% (95%CI: 62-75%), respectively; IDHmut-Noncodel: 0.75 (95%CI: 0.71-0.79), 42% (95%CI: 34-50%), and 99% (95%CI: 96-100%), respectively; IDH-Mutation regardless of 1p/19q codeletion status: 0.77 (95%CI: 0.73-0.80), 29% (95%CI: 21-40%), and 99% (95%CI: 92-100%), respectively.
The T2-FLAIR mismatch sign was an insensitive but highly specific marker for IDHmut-Noncodel and IDH-Mutation LGGs, whereas it was not a useful marker for IDHmut-Codel LGGs. The findings might identify the T2-FLAIR mismatch sign as a non-invasive imaging biomarker for the selection of patients with IDH-mutant LGGs.
• The T2-FLAIR mismatch sign was not a sensitive sign for IDH mutation in LGGs. • The T2-FLAIR mismatch sign was related to IDHmut-Noncodel with a specificity of 99%. • The pooled specificity (69%) of the T2-FLAIR mismatch sign for IDHmut-Codel was low.
Han Z
,Chen Q
,Zhang L
,Mo X
,You J
,Chen L
,Fang J
,Wang F
,Jin Z
,Zhang S
,Zhang B
... -
《-》
Improving Noninvasive Classification of Molecular Subtypes of Adult Gliomas With Diffusion-Weighted MR Imaging: An Externally Validated Machine Learning Algorithm.
Genetic testing for molecular markers of gliomas sometimes is unavailable because of time-consuming and expensive, even limited tumor specimens or nonsurgery cases.
To train a three-class radiomic model classifying three molecular subtypes including isocitrate dehydrogenase (IDH) mutations and 1p/19q-noncodeleted (IDHmut-noncodel), IDH wild-type (IDHwt), IDH-mutant and 1p/19q-codeleted (IDHmut-codel) of adult gliomas and investigate whether radiomic features from diffusion-weighted imaging (DWI) could bring additive value.
Retrospective.
A total of 755 patients including 111 IDHmut-noncodel, 571 IDHwt, and 73 IDHmut-codel cases were divided into training (n = 480) and internal validation set (n = 275); 139 patients including 21 IDHmut-noncodel, 104 IDHwt, and 14 IDHmut-codel cases were utilized as external validation set.
A 1.5 T or 3.0 T/multiparametric MRI, including T1-weighted (T1), T1-weighted gadolinium contrast-enhanced (T1c), T2-weighted (T2), fluid attenuated inversion recovery (FLAIR), and DWI.
The performance of multiparametric radiomic model (random-forest model) using 22 selected features from T1, T2, FLAIR, T1c images and apparent diffusion coefficient (ADC) maps, and conventional radiomic model using 20 selected features from T1, T2, FLAIR, and T1c images was assessed in internal and external validation sets by comparing probability values and actual incidence.
Mann-Whitney U test, Chi-Squared test, Wilcoxon test, receiver operating curve (ROC), and area under the curve (AUC); DeLong analysis. P < 0.05 was statistically significant.
The multiparametric radiomic model achieved AUC values for IDHmut-noncodel, IDHwt, and IDHmut-codel of 0.8181, 0.8524, and 0.8502 in internal validation set and 0.7571, 0.7779, and 0.7491 in external validation set, respectively. Multiparametric radiomic model showed significantly better diagnostic performance after DeLong analysis, especially in classifying IDHwt and IDHmut-noncodel subtypes.
Radiomic features from DWI could bring additive value and improve the performance of conventional MRI-based radiomic model for classifying the molecular subtypes especially IDHmut-noncodel and IDHwt of adult gliomas.
Stage 2.
Guo Y
,Ma Z
,Pei D
,Duan W
,Guo Y
,Liu Z
,Guan F
,Wang Z
,Xing A
,Guo Z
,Luo L
,Wang W
,Yu B
,Zhou J
,Ji Y
,Yan D
,Cheng J
,Liu X
,Yan J
,Zhang Z
... -
《-》