Contrasting effects of host identity, plant community, and local species pool on the composition and colonization levels of arbuscular mycorrhizal fungal community in a temperate grassland.

来自 PUBMED

作者:

Šmilauer PKošnar JKotilínek MŠmilauerová M

展开

摘要:

Arbuscular mycorrhizal fungi (AMFs) are important plant symbionts, but we know little about the effects of plant taxonomic identity or functional group on the AMF community composition. To examine the effects of the surrounding plant community, of the host, and of the AMF pool on the AMF community in plant roots, we manipulated plant community composition in a long-term field experiment. Within four types of manipulated grassland plots, seedlings of eight grassland plant species were planted for 12 wk, and AMFs in their roots were quantified. Additionally, we characterized the AMF community of individual plots (as their AMF pool) and quantified plot abiotic conditions. The largest determinant of AMF community composition was the pool of available AMFs, varying at metre scale due to changing soil conditions. The second strongest predictor was the host functional group. The differences between grasses and dicotyledonous forbs in AMF community variation and diversity were much larger than the differences among species within those groups. High cover of forbs in the surrounding plant community had a strong positive effect on AMF colonization intensity in grass hosts. Using a manipulative field experiment enabled us to demonstrate direct causal effects of plant host and surrounding vegetation.

收起

展开

DOI:

10.1111/nph.16112

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(216)

参考文献(0)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读