Deep neural networks are superior to dermatologists in melanoma image classification.

来自 PUBMED

摘要:

Melanoma is the most dangerous type of skin cancer but is curable if detected early. Recent publications demonstrated that artificial intelligence is capable in classifying images of benign nevi and melanoma with dermatologist-level precision. However, a statistically significant improvement compared with dermatologist classification has not been reported to date. For this comparative study, 4204 biopsy-proven images of melanoma and nevi (1:1) were used for the training of a convolutional neural network (CNN). New techniques of deep learning were integrated. For the experiment, an additional 804 biopsy-proven dermoscopic images of melanoma and nevi (1:1) were randomly presented to dermatologists of nine German university hospitals, who evaluated the quality of each image and stated their recommended treatment (19,296 recommendations in total). Three McNemar's tests comparing the results of the CNN's test runs in terms of sensitivity, specificity and overall correctness were predefined as the main outcomes. The respective sensitivity and specificity of lesion classification by the dermatologists were 67.2% (95% confidence interval [CI]: 62.6%-71.7%) and 62.2% (95% CI: 57.6%-66.9%). In comparison, the trained CNN achieved a higher sensitivity of 82.3% (95% CI: 78.3%-85.7%) and a higher specificity of 77.9% (95% CI: 73.8%-81.8%). The three McNemar's tests in 2 × 2 tables all reached a significance level of p < 0.001. This significance level was sustained for both subgroups. For the first time, automated dermoscopic melanoma image classification was shown to be significantly superior to both junior and board-certified dermatologists (p < 0.001).

收起

展开

DOI:

10.1016/j.ejca.2019.05.023

被引量:

68

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(427)

参考文献(0)

引证文献(68)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读