Impact of mTOR hyperactive neurons on the morphology and physiology of adjacent neurons: Do PTEN KO cells make bad neighbors?
摘要:
Hyperactivation of the mechanistic target of rapamycin (mTOR) pathway is associated with epilepsy, autism and brain growth abnormalities in humans. mTOR hyperactivation often results from developmental somatic mutations, producing genetic lesions and associated dysfunction in relatively restricted populations of neurons. Disrupted brain regions, such as those observed in focal cortical dysplasia, can contain a mix of normal and mutant cells. Mutant cells exhibit robust anatomical and physiological changes. Less clear, however, is whether adjacent, initially normal cells are affected by the presence of abnormal cells. To explore this question, we used a conditional, inducible mouse model approach to delete the mTOR negative regulator phosphatase and tensin homolog (PTEN) from <1% to >30% of hippocampal dentate granule cells. We then examined the morphology of PTEN-expressing granule cells located in the same dentate gyri as the knockout (KO) cells. Despite the development of spontaneous seizures in higher KO animals, and disease worsening with increasing age, the morphology and physiology of PTEN-expressing cells was only modestly affected. PTEN-expressing cells had smaller somas than cells from control animals, but other parameters were largely unchanged. These findings contrast with the behavior of PTEN KO cells, which show increasing dendritic extent with greater KO cell load. Together, the findings indicate that genetically normal neurons can exhibit relatively stable morphology and intrinsic physiology in the presence of nearby pathological neurons and systemic disease.
收起
展开
DOI:
10.1016/j.expneurol.2019.113029
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(97)
参考文献(42)
引证文献(4)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无