Four decades of land-cover, land-use and hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon.
Long-term human-induced impacts have significantly changed the Amazonian landscape. The most dramatic land cover and land use (LCLU) changes began in the early 1970s with the establishment of the Trans-Amazon Highway and large government projects associated with the expansion of agricultural settlement and cattle ranching, which cleared significant tropical forest cover in the areas of new and accelerated human development. Taking the changes in the LCLU over the past four decades as a basis, this study aims to determine the consequences of land cover (forest and savanna) and land use (pasturelands, mining and urban) changes on the hydroclimatology of the Itacaiúnas River watershed area of the located in the southeastern Amazon region. We analyzed a multi-decadal Landsat dataset from 1973, 1984, 1994, 2004 and 2013 and a 40-yr time series of water discharge from the Itacaiúnas River, as well as air temperature and relative humidity data over this drainage area for the same period. We employed standard Landsat image processing techniques in conjunction with a geographic object-based image analysis and multi-resolution classification approach. With the goal of detecting possible long-term trends, non-parametric Mann-Kendall test was applied, based on a Sen slope estimator on a 40-yr annual PREC, TMED and RH time series, considering the spatial average of the entire watershed. In the 1970s, the region was entirely covered by forest (99%) and savanna (∼0.3%). Four decades later, only ∼48% of the tropical forest remains, while pasturelands occupy approximately 50% of the watershed area. Moreover, in protected areas, nearly 97% of the tropical forest remains conserved, while the forest cover of non-protected areas is quite fragmented and, consequently, unevenly distributed, covering an area of only 30%. Based on observational data analysis, there is evidence that the conversion of forest cover to extensive and homogeneous pasturelands was accompanied by systematic modifications to the hydroclimatology cycle of the Itacaiúnas watershed, thus highlighting drier environmental conditions due to a rise in the region's air temperature, a decrease in the relative humidity, and an increase in river discharge.
Souza-Filho PW
,de Souza EB
,Silva Júnior RO
,Nascimento WR Jr
,Versiani de Mendonça BR
,Guimarães JT
,Dall'Agnol R
,Siqueira JO
... -
《-》
Geospatial modeling to assess the past and future land use-land cover changes in the Brahmaputra Valley, NE India, for sustainable land resource management.
Satellite remote sensing and geographic information system (GIS) have revolutionalized the mapping, quantifying, and assessing the land surface processes, particularly analyzing the past and future land use-land cover (LULC) change patterns. Worldwide river basins have observed enormous changes in the land system dynamics as a result of anthropogenic factors such as population, urbanization, development, and agriculture. As is the scenario of various other river basins, the Brahmaputra basin, which falls in China, Bhutan, India, and Bangladesh, is also witnessing the same environmental issues. The present study has been conducted on the Brahmaputra Valley in Assam, India (a sub-basin of the larger Brahmaputra basin) and assessed its LULC changes using a maximum likelihood classification algorithm. The study also simulated the changing LULC pattern for the years 2030, 2040, and 2050 using the GIS-based cellular automata Markov model (CA-Markov) to understand the implications of the ongoing trends in the LULC change for future land system dynamics. The current rate of change of the LULC in the region was assessed using the 48 years of earth observation satellite data from 1973 to 2021. It was observed that from 1973 to 2021, the area under vegetation cover and water body decreased by 19.48 and 47.13%, respectively. In contrast, cultivated land, barren land, and built-up area increased by 7.60, 20.28, and 384.99%, respectively. It was found that the area covered by vegetation and water body has largely been transitioned to cultivated land and built-up classes. The research predicted that, by the end of 2050, the area covered by vegetation, cultivated land, and water would remain at 39.75, 32.31, and 4.91%, respectively, while the area covered by built-up areas will increase by up to 18.09%. Using the kappa index (ki) as an accuracy indicator of the simulated future LULCs, the predicted LULC of 2021 was validated against the observed LULC of 2021, and the very high ki observed validated the generated simulation LULC products. The research concludes that significant LULC changes are taking place in the study area with a decrease in vegetation cover and water body and an increase of area under built-up. Such trends will continue in the future and shall have disastrous environmental consequences unless necessary land resource management strategies are not implemented. The main factors responsible for the changing dynamics of LULC in the study area are urbanization, population growth, climate change, river bank erosion and sedimentation, and intensive agriculture. This study is aimed at providing the policy and decision-makers of the region with the necessary what-if scenarios for better decision-making. It shall also be useful in other countries of the Brahmaputra basin for transboundary integrated river basin management of the whole region.
Debnath J
,Sahariah D
,Lahon D
,Nath N
,Chand K
,Meraj G
,Farooq M
,Kumar P
,Kanga S
,Singh SK
... -
《-》
Impacts of LUCC on soil properties in the riparian zones of desert oasis with remote sensing data: a case study of the middle Heihe River basin, China.
Large-scale changes in land use and land cover over long timescales can induce significant variations in soil physicochemical properties, particularly in the riparian zones of arid regions. Frequent reclamation of wetlands and grasslands and intensive agricultural activity have induced significant changes in both land use/cover and soil physicochemical properties in the riparian zones of the middle Heihe River basin of China. The present study aims to explore whether land use/land cover change (LUCC) can well explain the variations in soil properties in the riparian zones of the middle Heihe River basin. To achieve this, we mapped LUCC and quantified the type of land use change using remote sensing images, topographic maps, and GIS analysis techniques. Forty-two sites were selected for soil and vegetation sampling. Then, physical and chemical experiments were employed to determine soil moisture, soil bulk density, soil pH, soil organic carbon, total nitrogen, total potassium, total phosphorous, available nitrogen, available potassium, and available phosphorous. The Independent-Samples Kruskal-Wallis Test, principal component analysis, and a scatter matrix were used to analyze the effects of LUCC on soil properties. The results indicate that the majority of the parameters investigated were affected significantly by LUCC. In particular, soil moisture and soil organic carbon can be explained well by land cover change and land use change, respectively. Furthermore, changes in soil moisture could be attributed primarily to land cover changes. Changes in soil organic carbon were correlated closely with the following land use change types: wetlands-arable, forest-grasslands, and grasslands-desert. Other parameters, including pH and total K, were also found to exhibit significant correlations with LUCC. However, changes in soil nutrients were shown to be induced most probably by human agricultural activity (i.e. fertilize, irrigation, tillage, etc.), rather than by simple conversions from one land use/cover types to the others.
Jiang P
,Cheng L
,Li M
,Zhao R
,Duan Y
... -
《-》