Sulforaphane administration alleviates diffuse axonal injury (DAI) via regulation signaling pathway of NRF2 and HO-1.

来自 PUBMED

作者:

Wu DMZheng ZHFan SHZhang ZFChen GQLu J

展开

摘要:

Nuclear factor erythroid 2-related factor 2 (Nrf2) can alleviate diffuse axonal injury (DAI)-induced apoptosis by regulating expression of heme oxygenase-1 (HO-1), while sulforaphane (SFN) was shown to reduce oxidative stress by increasing the expression of Nrf2. Therefore, we aimed to investigate therapeutic effect of SFN in the treatment of DAI and the ability of SFN to reduce oxidative stress. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to observe the effects of H2 O 2 and SFN on cell viability. Fluorometric assay, Western blot analysis, and flow cytometry were conducted to validate the protective role of SFN in an animal model of DAI. In addition, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were measured in DAI rats treated by SFN, while Western blot, immunohistochemistry assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were carried out to verify the effect of SFN in different animal groups. Cell viability was reduced by H2 O 2 in a dose-dependent manner, while the treatment by SFN significantly promoted cell growth. Meanwhile the administration of SFN effectively reduced the levels of caspase-3/poly(ADP-ribose) polymerase (PARP) activity increased by the H 2 O 2 treatment, indicating that the protective effect of SFN could be mediated by its ability to suppress caspase-3 activation and PARP cleavage. In addition, the SFN treatment reduced the intracellular reactive oxygen species (ROS) generation induced by H 2 O 2 . Moreover, the MDA levels of SOD/GPx activity in various rat groups showed the protective effects of SFN in DAI rats. It is suspected that the protective effect of SFN was exerted via the activation of the Nrf2/HO-1 signaling pathway. In this study, DAI and DAI + phosphate-buffered saline (PBS) groups also showed the presence of more TUNEL-positive cells compared with the sham-operated group, while the SFN treatment reduced the extent of neuronal apoptosis. By activating the Nrf2/HO-1 signaling pathway and reducing the activity of caspase-3, SFN reduces the apoptosis of neurons in brain trauma-induced DAI.

收起

展开

DOI:

10.1002/jcb.29203

被引量:

8

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(651)

参考文献(0)

引证文献(8)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读