Genetics of resistance to the African trypanosomes. VI. Heredity of resistance and variable surface glycoprotein-specific immune responses.

来自 PUBMED

作者:

De Gee ALLevine RFMansfield JM

展开

摘要:

The question of genetic linkage of parasite-specific immune responses to resistance to infection in experimental African trypanosomiasis was addressed. For this purpose, major histocompatibility complex-compatible resistant and susceptible inbred mouse strains and their F1 hybrid, F2 hybrid, and backcross offspring were infected with Trypanosoma brucei rhodesiense LouTat 1. Immunologic control of the first peak of parasitemia and survival times were the parameters measured. As we have reported previously (R. F. Levine and J. M. Mansfield, J. Immunol. 133:1564, 1984), B10.BR/SgSnJ mice are relatively resistant and controlled the growth of the infecting variant antigenic type (VAT) by mounting an antibody response to exposed epitopes of the variable surface glycoprotein (VSG). Fluctuating parasitemias resulting from sequential growth of different variable antigenic types occurred subsequently, and these mice died with a median survival time of 48 days. C3HeB/FeJ mice, relatively susceptible, did not control the infecting VAT and did not exhibit VSG-specific antibodies. These mice died with a median survival time of 22 days. The (B10.BR X C3H)F1 hybrids derived from crosses between resistant and susceptible mice all exhibited VSG-specific antibody responses and controlled the infecting VAT population. However, the median survival time of the F1 hybrids (24 days) was not significantly different from the survival time of the susceptible C3H parent. These findings demonstrate for the first time that antibody-mediated control of parasitemia is inherited as a dominant trait; that overall resistance, as measured by survival time, is inherited as a recessive trait (e.g., susceptibility is dominant); and that the two events segregate independently of one another. Further analyses of the inheritance of immunity and resistance (survival time) were made in which the F2 hybrid and backcross studies revealed that there are multiple genes controlling the VSG-specific antibody response as well as determining susceptibility. An extension of the present studies to a similar but non-major histocompatibility complex-mouse model system of resistance and susceptibility (C57BL/6J and C3H/HeJ mice, F1 hybrids, and 11 recombinant inbred B X H strains derived from them) was made in order to link the strain distribution patterns of known genetic markers with control of VSG-specific antibody responses or with control of susceptibility. Results of this study showed that resistance varied independently of the ability to control parasitemia with VSG-specific B cell responses.(ABSTRACT TRUNCATED AT 400 WORDS)

收起

展开

被引量:

14

年份:

1988

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(404)

参考文献(0)

引证文献(14)

来源期刊

JOURNAL OF IMMUNOLOGY

影响因子:5.421

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读