Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics.

来自 PUBMED

作者:

Borah ADas RMazumdar RThakur D

展开

摘要:

Tea (Camellia sinensis (L.) O. Kuntze) is an economically important caffeine-containing beverage crop with massive plantation in the Northeast corner of the agroclimatic belt of India. The main aim of the work was to isolate, identify and characterize the native plant growth promoting endophytes associated with tea for future microbe based bioformulation. A total of 129 endophytic bacteria were isolated and characterized for plant growth promoting traits such as indole-3-acetic acid (IAA), phosphate solubilization, ammonia production, biocontrol traits like siderophore and extracellular enzyme production. BOX-PCR fingerprinting was used to differentiate the various bacterial isolates obtained from six different tea species. 16S rRNA sequencing and blast analysis showed that these isolates belonged to different genera, that is, Bacillus, Brevibacterium, Paenibacillus and Lysinibacillus. Lysinibacillus sp. S24 showed the highest phosphate solubilization and IAA acid production efficiency of 268·4 ± 14·3 and 13·5 ± 0·5 µg ml-1 , respectively. Brevibacterium sp. S91 showed the highest ammonia production of 6·2 ± 0·5 µmol ml-1 . Chitinase, cellulase, protease and pectinase activities were shown by 4·6, 34·1, 27·13 and 13·14% of the total isolates, respectively. Similarly, 41% of the total isolates were positive for 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Further, the potent PGP isolates, S24 and S91 were able to enhance the vegetative parameters such as dry/fresh weight of root and shoot of tea plants in nursery conditions. Our findings corroborate that tea endophytic bacteria possess the potential to demonstrate multiple PGP traits both, in vivo and in vitro and have the potential for further large-scale trials. The exploration of tea endophytic bacterial community is suitable for the development of bioformulations for an integrated nutrient management and thus sustainable crop production and decreasing the hazardous effects of chemical fertilizers on the environment and human health.

收起

展开

DOI:

10.1111/jam.14356

被引量:

24

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(725)

参考文献(0)

引证文献(24)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读