-
Whole-genome resequencing reveals selection signatures associated with milk production traits in African Kenana dairy zebu cattle.
Milk production and composition are the most economically important traits affecting profitability in dairy cattle. In this study, we aimed at detecting signatures of positive selection in Kenana, known as one of the high milk production African indigenous zebu cattle, using next-generation sequencing data. To detect genomic signatures of positive selection, we applied three methods based on population comparison, fixation index (F), cross population composite likelihood ratio (XP-CLR) and nucleotide diversity (Pi). Further analysis showed that several candidate genes such as CSN3, IGFBP-2, RORA, ABCG2, B4GALT1 and GHR are positively selected for milk production traits in Kenana cattle. The candidate genes and enriched pathways identified in this study may provide a basis for future genome-wide association studies and investigations into genomic targets of selection in dairy cattle.
Asadollahpour Nanaei H
,Dehghani Qanatqestani M
,Esmailizadeh A
《-》
-
Signatures of positive selection in African Butana and Kenana dairy zebu cattle.
Butana and Kenana are two types of zebu cattle found in Sudan. They are unique amongst African indigenous zebu cattle because of their high milk production. Aiming to understand their genome structure, we genotyped 25 individuals from each breed using the Illumina BovineHD Genotyping BeadChip. Genetic structure analysis shows that both breeds have an admixed genome composed of an even proportion of indicine (0.75 ± 0.03 in Butana, 0.76 ± 0.006 in Kenana) and taurine (0.23 ± 0.009 in Butana, 0.24 ± 0.006 in Kenana) ancestries. We also observe a proportion of 0.02 to 0.12 of European taurine ancestry in ten individuals of Butana that were sampled from cattle herds in Tamboul area suggesting local crossbreeding with exotic breeds. Signatures of selection analyses (iHS and Rsb) reveal 87 and 61 candidate positive selection regions in Butana and Kenana, respectively. These regions span genes and quantitative trait loci (QTL) associated with biological pathways that are important for adaptation to marginal environments (e.g., immunity, reproduction and heat tolerance). Trypanotolerance QTL are intersecting candidate regions in Kenana cattle indicating selection pressure acting on them, which might be associated with an unexplored level of trypanotolerance in this cattle breed. Several dairy traits QTL are overlapping the identified candidate regions in these two zebu cattle breeds. Our findings underline the potential to improve dairy production in the semi-arid pastoral areas of Africa through breeding improvement strategy of indigenous local breeds.
Bahbahani H
,Salim B
,Almathen F
,Al Enezi F
,Mwacharo JM
,Hanotte O
... -
《PLoS One》
-
Detection of selection signatures in dairy and beef cattle using high-density genomic information.
Artificial selection for economically important traits in cattle is expected to have left distinctive selection signatures on the genome. Access to high-density genotypes facilitates the accurate identification of genomic regions that have undergone positive selection. These findings help to better elucidate the mechanisms of selection and to identify candidate genes of interest to breeding programs.
Information on 705 243 autosomal single nucleotide polymorphisms (SNPs) in 3122 dairy and beef male animals from seven cattle breeds (Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental) were used to detect selection signatures by applying two complementary methods, integrated haplotype score (iHS) and global fixation index (FST). To control for false positive results, we used false discovery rate (FDR) adjustment to calculate adjusted iHS within each breed and the genome-wide significance level was about 0.003. Using the iHS method, 83, 92, 91, 101, 85, 101 and 86 significant genomic regions were detected for Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental cattle, respectively. None of these regions was common to all seven breeds. Using the FST approach, 704 individual SNPs were detected across breeds. Annotation of the regions of the genome that showed selection signatures revealed several interesting candidate genes i.e. DGAT1, ABCG2, MSTN, CAPN3, FABP3, CHCHD7, PLAG1, JAZF1, PRKG2, ACTC1, TBC1D1, GHR, BMP2, TSG1, LYN, KIT and MC1R that play a role in milk production, reproduction, body size, muscle formation or coat color. Fifty-seven common candidate genes were found by both the iHS and global FST methods across the seven breeds. Moreover, many novel genomic regions and genes were detected within the regions that showed selection signatures; for some candidate genes, signatures of positive selection exist in the human genome. Multilevel bioinformatic analyses of the detected candidate genes suggested that the PPAR pathway may have been subjected to positive selection.
This study provides a high-resolution bovine genomic map of positive selection signatures that are either specific to one breed or common to a subset of the seven breeds analyzed. Our results will contribute to the detection of functional candidate genes that have undergone positive selection in future studies.
Zhao F
,McParland S
,Kearney F
,Du L
,Berry DP
... -
《-》
-
Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing data.
Crossbreeding is an important way to improve production beef cattle performance. Pinan cattle is a new hybrid cattle obtained from crossing Piedmontese bulls with Nanyang cows. After more than 30 years of cross-breeding, Pinan cattle show a variety of excellent characteristics, including fast growth, early onset of puberty, and good meat quality. In this study, we analyzed the genetic diversity, population structure, and genomic region under the selection of Pinan cattle based on whole-genome sequencing data of 30 Pinan cattle and 169 published cattle genomic data worldwide. RESULTS: Estimating ancestry composition analysis showed that the composition proportions for our Pinan cattle were mainly Piedmontese and a small amount of Nanyang cattle. The analyses of nucleotide diversity and linkage disequilibrium decay indicated that the genomic diversity of Pinan cattle was higher than that of European cattle and lower than that of Chinese indigenous cattle. De-correlated composite of multiple selection signals, which combines four different statistics including θπ, CLR, F, and XP-EHH, was computed to detect the signatures of selection in the Pinan cattle genome. A total of 83 genes were identified, affecting many economically important traits. Functional annotation revealed that these selected genes were related to immune (BOLA-DQA2, BOLA-DQB, LSM14A, SEC13, and NAALADL2), growth traits (CYP4A11, RPL26, and MYH10), embryo development (REV3L, NT5E, CDX2, KDM6B, and ADAMTS9), hornless traits (C1H21orf62), and climate adaptation (ANTXR2).
In this paper, we elucidated the genomic characteristics, ancestry composition, and selective signals related to important economic traits in Pinan cattle. These results will provide the basis for further genetic improvement of Pinan cattle and reference for other hybrid cattle related studies.
Zhang S
,Yao Z
,Li X
,Zhang Z
,Liu X
,Yang P
,Chen N
,Xia X
,Lyu S
,Shi Q
,Wang E
,Ru B
,Jiang Y
,Lei C
,Chen H
,Huang Y
... -
《BMC GENOMICS》
-
Assessing genomic diversity and signatures of selection in Jiaxian Red cattle using whole-genome sequencing data.
Native cattle breeds are an important source of genetic variation because they might carry alleles that enable them to adapt to local environment and tough feeding conditions. Jiaxian Red, a Chinese native cattle breed, is reported to have originated from crossbreeding between taurine and indicine cattle; their history as a draft and meat animal dates back at least 30 years. Using whole-genome sequencing (WGS) data of 30 animals from the core breeding farm, we investigated the genetic diversity, population structure and genomic regions under selection of Jiaxian Red cattle. Furthermore, we used 131 published genomes of world-wide cattle to characterize the genomic variation of Jiaxian Red cattle.
The population structure analysis revealed that Jiaxian Red cattle harboured the ancestry with East Asian taurine (0.493), Chinese indicine (0.379), European taurine (0.095) and Indian indicine (0.033). Three methods (nucleotide diversity, linkage disequilibrium decay and runs of homozygosity) implied the relatively high genomic diversity in Jiaxian Red cattle. We used θπ, CLR, F and XP-EHH methods to look for the candidate signatures of positive selection in Jiaxian Red cattle. A total number of 171 (θπ and CLR) and 17 (F and XP-EHH) shared genes were identified using different detection strategies. Functional annotation analysis revealed that these genes are potentially responsible for growth and feed efficiency (CCSER1), meat quality traits (ROCK2, PPP1R12A, CYB5R4, EYA3, PHACTR1), fertility (RFX4, SRD5A2) and immune system response (SLAMF1, CD84 and SLAMF6).
We provide a comprehensive overview of sequence variations in Jiaxian Red cattle genomes. Selection signatures were detected in genomic regions that are possibly related to economically important traits in Jiaxian Red cattle. We observed a high level of genomic diversity and low inbreeding in Jiaxian Red cattle. These results provide a basis for further resource protection and breeding improvement of this breed.
Xia X
,Zhang S
,Zhang H
,Zhang Z
,Chen N
,Li Z
,Sun H
,Liu X
,Lyu S
,Wang X
,Li Z
,Yang P
,Xu J
,Ding X
,Shi Q
,Wang E
,Ru B
,Xu Z
,Lei C
,Chen H
,Huang Y
... -
《BMC GENOMICS》