Dose-averaged LET calculation for proton track segments using microdosimetric Monte Carlo simulations.

来自 PUBMED

作者:

Bertolet ABaratto-Roldán ABarbieri SBaiocco GCarabe ACortés-Giraldo MA

展开

摘要:

There is an increasing interest in calculating linear energy transfer (LET) distributions for proton therapy treatments in order to assess the influence of this quantity in biological terms. Microdosimetric Monte Carlo (MC) simulations are useful tools to calculate dose-averaged LET, as this has been broadly proposed as the most adequate quantity to characterize these biological effects. However, a straightforward uniform sampling of the scoring site turns out to be computationally unaffordable. In contrast, some issues have been pointed out with the more efficient weighted sampling approach, frequently used in literature. Here, we address the issues associated with the latter method and propose adequate corrections to achieve reliable calculations of dose-averaged LET values from microdosimetry. Proton track structures have been simulated with Geant4-DNA considering two different approaches. One version employs a uniform sampling for placing the spherical site and is used as the reference. The other one uses a weighted sampling by considering the spatial distribution of transfer points. Some corrections are proposed for calculating a dose-averaged LET comparable to the reference case. An additional MC approach is proposed to obtain the weighted mean of the energy imparted per electronic collision of the proton within the site, the δ 2 function, related to the straggling distribution, as an intermediate step in the LET calculation. Energy imparted per event distributions are different when employing either sampling methods, due to the different geometrical randomness. We have found an agreement below (0.15 ± 0.05) keV/μm in the worst case for uniform and weighted methods in dose-averaged LET values when the weighted sampling results are corrected according to our proposal. Our analysis is restricted to spherical sites of 1 and 10 μm diameter and monoenergetic beams in the range from 2 to 90 MeV. This work shows a reliable and computational-efficient method to perform calculations of track segment dose-averaged LET using MC simulations for proton therapy beams, including the necessary considerations for obtaining the straggling distribution characteristics. The validity of this approach remains as long as the stopping power of the proton can be considered as constant along its track within the site.

收起

展开

DOI:

10.1002/mp.13643

被引量:

6

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(258)

参考文献(0)

引证文献(6)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读