-
Placental bed research: I. The placental bed: from spiral arteries remodeling to the great obstetrical syndromes.
The term placental bed was coined to describe the maternal-fetal interface (ie, the area in which the placenta attaches itself to the uterus). Appropriate vascularization of this area is of vital importance for the development of the fetus; this is why systematic investigations of this area have now been carried out. Initially, the challenge was the identification and classification of the various successive branching of uterine arteries in this area. These vessels have a unique importance because failure of their physiological transformation is considered to be the anatomical basis for reduced perfusion to the intervillous space in women with preeclampsia, fetal growth restriction, preterm labor, preterm premature rupture of membranes, abruptio placentae, and fetal death. To investigate in depth the pathophysiology of the placental bed, some 60 years ago, a large number of placental bed biopsies, as well as of cesarean hysterectomy specimens with placenta in situ, from both early and late normotensive and hypertensive pregnancies, were carefully dissected and analyzed. Thanks to the presence of a series of specific physiological changes, characterized by the invasion and substitution of the arterial intima by trophoblast, this material allowed the identification in the placental bed of normal pregnancies of the main vessels, the uteroplacental arteries. It was then discovered that preeclampsia is associated with defective or absent transformation of the myometrial segment of the uteroplacental arteries. In addition, in severe hypertensive disease, atherosclerotic lesions were also found in the defective myometrial segment. Finally, in the basal decidua, a unique vascular lesion, coined acute atherosis, was also identified This disorder of deep placentation, coined defective deep placentation, has been associated with the great obstetrical syndromes, grouping together preeclampsia, intrauterine growth restriction, preterm labor, preterm premature rupture of membranes, late spontaneous abortion, and abruptio placentae. More recently, simplified techniques of tissue sampling have been also introduced: decidual suction allows to obtain a large number of decidual arteries, although their origin in the placental bed cannot be determined. Biopsies parallel to the surface of the basal plate have been more interesting, making possible to identify the vessels' region (central, paracentral, or peripheral) of origin in the placental bed and providing decidual material for immunohistochemical studies. Finally, histochemical and electron microscopy investigations have now clarified the pathology and pathogenetic mechanisms underlying the impairment of the physiological vascular changes.
Brosens I
,Puttemans P
,Benagiano G
《-》
-
Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia.
Physiological transformation with remodeling of the uteroplacental spiral arteries is key to a successful placentation and normal placental function. It is an intricate process that involves, but is not restricted to, complex interactions between maternal decidual immune cells and invasive trophoblasts in the uterine wall. In normal pregnancy, the smooth muscle cells of the arterial tunica media of uteroplacental spiral arteries are replaced by invading trophoblasts and fibrinoid, and the arterial diameter increases 5- to 10-fold. Poor remodeling of the uteroplacental spiral arteries is linked to early-onset preeclampsia and several other major obstetrical syndromes, including fetal growth restriction, placental abruption, and spontaneous preterm premature rupture of membranes. Extravillous endoglandular and endovenous trophoblast invasions have recently been put forth as potential contributors to these syndromes as well. The well-acknowledged disturbed extravillous invasion of maternal spiral arteries in preeclampsia is summarized, as are briefly novel concepts of disturbed extravillous endoglandular and endovenous trophoblast invasions. Acute atherosis is a foam cell lesion of the uteroplacental spiral arteries associated with poor remodeling. It shares some morphologic features with early stages of atherosclerosis, but several molecular differences between these lesions have also recently been revealed. Acute atherosis is most prevalent at the maternal-fetal interface, at the tip of the spiral arteries. The localization of acute atherosis downstream of poorly remodeled arteries suggests that alterations in blood flow may trigger inflammation and foam cell development. Acute atherosis within the decidua basalis is not, however, confined to unremodeled areas of spiral arteries or to hypertensive disorders of pregnancy and may even be present in some clinically uneventful pregnancies. Given that foam cells of atherosclerotic lesions are known to arise from smooth muscle cells or macrophages activated by multiple types of inflammatory stimulation, we have proposed that multiple forms of decidual vascular inflammation may cause acute atherosis, with or without poor remodeling and/or preeclampsia. Furthermore, we propose that acute atherosis may develop at different gestational ages, depending on the type and degree of the inflammatory insult. This review summarizes the current knowledge of spiral artery remodeling defects and acute atherosis in preeclampsia. Some controversies will be presented, including endovascular and interstitial trophoblast invasion depths, the concept of 2-stage trophoblast invasion, and whether the replacement of maternal spiral artery endothelium by fetal endovascular trophoblasts is permanent. We will discuss the role of acute atherosis in the pathophysiology of preeclampsia and short- and long-term health correlates. Finally, we suggest future opportunities for research on this intriguing uteroplacental interface between the mother and fetus.
Staff AC
,Fjeldstad HE
,Fosheim IK
,Moe K
,Turowski G
,Johnsen GM
,Alnaes-Katjavivi P
,Sugulle M
... -
《-》
-
Placental bed research: II. Functional and immunological investigations of the placental bed.
Research on the placenta as the interface between the mother and the fetus has been undertaken for some 150 years, and in 2 subsequent reviews, we attempted to summarize the situation. In the first part, we described the discovery of unique physiological modifications of the uteroplacental spiral arteries, enabling them to cope with a major increase in blood flow necessary to ensure proper growth of the fetus. These consist of an invasion of the arterial walls by trophoblast and a progressive disappearance of its normal structure. Researchers then turned to the pathophysiology of the placental bed and in particular to its maternal vascular tree. This yielded vital information for a better understanding of the so-called great obstetrical syndromes (preeclampsia, fetal growth restriction, premature labor and delivery, placenta accreta). Systematic morphological investigations of the uteroplacental vasculature showed that preeclampsia is associated with decreased or failed transformation of spiral arteries and the persistence of endothelial and smooth muscle cells in segments of their myometrial portion. Here we report on recent functional investigations of the placental bed, including in situ biophysical studies of uteroplacental blood flow and vascular resistance, and manipulation of uteroplacental perfusion. These new methodologies have provided a novel way of identifying pregnancies in which remodeling is impaired. In animals it is now possible to manipulate uteroplacental blood flow, leading to an enhancement of fetal growth; this opens the way to trials in abnormal human pregnancies. In this second part, we explored a new, extremely important area of research that deals with the role of specific subsets of leukocytes and macrophages in the placental bed. The human first-trimester decidua is rich in leukocytes called uterine natural killer cells. Both macrophages and uterine natural killer cells increase in number from the secretory endometrium to early pregnancy and play a critical role in mediating the process of spiral artery transformation by inducing initial structural changes. It seems therefore that vascular remodeling of spiral arteries is initiated independently of trophoblast invasion. Dysregulation of the immune system may lead to reproductive failure or pregnancy complications, and in this respect, recent studies have advanced our understanding of the mechanisms regulating immunological tolerance during pregnancy, with several mechanisms being proposed for the development of tolerance to the semiallogeneic fetus. In particular, these include several strategies by which the trophoblast avoids maternal recognition. Finally, an important new dimension is being explored: the likelihood that pregnancy syndromes and impaired uteroplacental vascular remodeling may be linked to future maternal and even the child's cardiovascular disease risk. The functional evidence underlying these observations will be discussed.
Harris LK
,Benagiano M
,D'Elios MM
,Brosens I
,Benagiano G
... -
《-》
-
Failure of physiologic transformation of spiral arteries, endothelial and trophoblast cell activation, and acute atherosis in the basal plate of the placenta.
Failure of physiologic transformation of spiral arteries has been reported in preeclampsia, fetal growth restriction, fetal death, and spontaneous preterm labor with intact or ruptured membranes. Spiral arteries with failure of physiologic transformation are prone to develop atherosclerotic-like lesions of atherosis. There are striking parallels between preeclampsia and atherosclerotic disease, and between lesions of atherosis and atherosclerosis. Endothelial activation, identified by intercellular adhesion molecule-1 expression, is present in atherosclerotic-like lesions of heart transplantation, and is considered a manifestation of rejection. Similarly, endothelial activation/dysfunction has been implicated in the pathophysiology of atherosclerosis and preeclampsia. Intercellular adhesion molecule-1-overexpressing-activated endothelial cells are more resistant to trophoblast displacement than nonactivated endothelium, and may contribute to shallow spiral artery trophoblastic invasion in obstetrical syndromes having failure of physiologic transformation.
We sought to determine whether failure of spiral artery physiologic transformation was associated with activation of interstitial extravillous trophoblasts and/or spiral artery endothelium and presence of acute atherosis in the placental basal plate.
A cross-sectional study of 123 placentas (19-42 weeks' gestation) obtained from normal pregnancies (n = 22), preterm prelabor rupture of membranes (n = 26), preterm labor (n = 23), preeclampsia (n = 27), intrauterine fetal death (n = 15), and small for gestational age (n = 10) was performed. Failure of spiral artery physiologic transformation and presence of cell activation was determined using immunohistochemistry of placental basal plates containing a median of 4 (minimum: 1; maximum: 9) vessels per placenta. Endothelial/trophoblast cell activation was defined by the expression of intercellular adhesion molecule-1. Investigators examining microscopic sections were blinded to clinical diagnosis. Pairwise comparisons among placenta groups were performed with Fisher exact test and Wilcoxon rank sum test using a Bonferroni-adjusted level of significance (.025).
We found that 87% (94/108) of placentas having spiral arteries with failure of physiologic transformation (actin-positive and cytokeratin-negative) in the basal plate, and 0% (0/15) of placentas having only spiral arteries with complete physiologic transformation (cytokeratin-positive and actin-negative), had arterial endothelial and/or interstitial extravillous trophoblasts reactive with the intercellular adhesion molecule-1 activation marker (P < .001). A significant correlation (R2 = 0.84) was found between expression of spiral artery endothelial and interstitial extravillous trophoblast intercellular adhesion molecule-1 (P < .001) in activated placentas. Lesions of atherosis were found in 31.9% (30/94) of placentas with complete and/or partial failure of physiologic transformation of spiral arteries that were intercellular adhesion molecule-1-positive, in none of the 14 placentas with failure of physiologic transformation that were intercellular adhesion molecule-1-negative, and in none of the 15 placentas with complete spiral artery physiologic transformation without failure (P = .001). All placentas (30/30, 100%) with atherosis were identified in placentas having concomitant spiral artery endothelial and interstitial extravillous trophoblast activation.
Failure of spiral artery physiologic transformation in the placental basal plate is associated with interstitial extravillous trophoblast and arterial endothelial activation along with increased frequency of spiral artery atherosis. These findings may be used to improve the characterization of different disorders of the placental bed such as in refining the existing tools for the early prediction of risk for preterm, preeclamptic, and other abnormal pregnancies.
Labarrere CA
,DiCarlo HL
,Bammerlin E
,Hardin JW
,Kim YM
,Chaemsaithong P
,Haas DM
,Kassab GS
,Romero R
... -
《-》
-
Defective trophoblast invasion underlies fetal growth restriction and preeclampsia-like symptoms in the stroke-prone spontaneously hypertensive rat.
What is the impact of chronic hypertension on placental development, fetal growth and maternal outcome in the stroke-prone spontaneously hypertensive rat (SHRSP)?
SHRSP showed an impaired remodeling of the spiral arteries and abnormal pattern of trophoblast invasion during placentation, which were associated with subsequent maternal glomerular injury and increased baseline hypertension as well as placental insufficiency and asymmetric fetal growth restriction (FGR).
A hallmark in the pathogenesis of preeclampsia (PE) is abnormal placentation with defective remodeling of the spiral arteries preceding the onset of the maternal syndrome. Pregnancies affected by chronic hypertension display an increased risk for PE, often associated with poor maternal and fetal outcomes. However, the impact of chronic hypertension on the placentation process as well as the nature of the factors promoting the development of PE in pregnant hypertensive women remain elusive.
Timed pregnancies [n = 5] were established by mating 10-12-week-old SHRSP and Wistar Kyoto (WKY, normotensive controls) females with congenic males. Maternal systolic blood pressures (SBPs) were recorded pre-mating, throughout pregnancy (GD1-19) and post-partum by the tail-cuff method. On selected dates, 24 h urine- and blood samples were collected, and animals were euthanized for isolation of implantation sites and kidneys for morphometrical analyses.
The 24 h proteinuria and the albumin:creatinine ratio were used for evaluation of maternal renal function. Renal injury was assessed on periodic acid Schiff, Masson's trichrome and Sirius red stainings. Placental and fetal weights were recorded on gestation day (GD)18 and GD20, followed by determination of fetal cephalization indexes and developmental stage, according to the Witschi scale. Morphometric analyses of placental development were conducted on hematoxylin-eosin stained tissue sections collected on GD14 and GD18, and complemented with immunohistochemical evaluation of isolectin B4 binding for assessment of placental vascularization. Analyses of vascular wall alpha actin content, perforin-positive natural killer (NK) cells and cytokeratin expression by immunohistochemistry were used for evaluation of spiral artery remodeling and trophoblast invasion.
SHRSP females presented significantly increased SBP records from GD13 to GD17 (SBPGD13 = 183.9 ± 3.9 mmHg, P < 0.005 versus baseline) and increased proteinuria at GD18 (P < 0.01 versus WKY). Histological examination of GD18 kidneys revealed glomerular enlargement and mesangial matrix expansion, which were not evident in pregnant WKY or age-matched virgin SHRSP. At GD20, SHRSP displayed a significant reduction of placental mass (P < 0.01 versus WKY) and signs of placental insufficiency (i.e. hypertrophy and reduced branching morphogenesis of the labyrinth layer), associated with decreased offspring weights and increased cephalization index (both P < 0.001 versus WKY) indicating asymmetric FGR. Notably, SHRSP placentas displayed an incomplete remodeling of spiral arteries starting as early as GD14, with luminal narrowing and reduced densities of perivascular NK cells followed by decreased infiltration of endovascular trophoblasts at GD18.
n/a.
A pitfall of the present study is the differences in the blood pressure profiles between rats and humans (i.e. unlike pregnancies affected by PE, blood pressure in SHRSP and other hypertensive rat models decreases pre-delivery), which limits extrapolation of the results.
Our findings provide new insights on the role of chronic hypertension as a risk factor for PE by interfering with early events during the placentation process. The SHRSP strain represents an attractive model for further studies aimed at addressing the relative contribution of intrinsic (i.e. placental) and extrinsic (i.e. decidual/vascular) factors to defective spiral artery remodeling in pregnancies affected by PE.
This work was supported by research grants from Fundación Florencio Fiorini to G.B., from Charité Stiftung to S.M.B. and University of Buenos Aires (UBACyt) to J.T. The authors have no competing interests to declare.
Barrientos G
,Pussetto M
,Rose M
,Staff AC
,Blois SM
,Toblli JE
... -
《-》