Molecular landscape of esophageal cancer: implications for early detection and personalized therapy.
Esophageal cancer (EC) is one of the most lethal cancers and a public health concern worldwide, owing to late diagnosis and lack of efficient treatment. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are main histopathological subtypes of EC that show striking differences in geographical distribution, possibly due to differences in exposure to risk factors and lifestyles. ESCC and EAC are distinct diseases in terms of cell of origin, epidemiology, and molecular architecture of tumor cells. Past efforts aimed at translating potential molecular candidates into clinical practice proved to be challenging, underscoring the need for identifying novel candidates for early diagnosis and therapy of EC. Several major international efforts have brought about important advances in identifying molecular landscapes of ESCC and EAC toward understanding molecular mechanisms and critical molecular events driving the progression and pathological features of the disease. In our review, we summarize recent advances in the areas of genomics and epigenomics of ESCC and EAC, their mutational signatures and immunotherapy. We also discuss implications of recent advances in characterizing the genome and epigenome of EC for the discovery of diagnostic/prognostic biomarkers and development of new targets for personalized treatment and prevention.
Talukdar FR
,di Pietro M
,Secrier M
,Moehler M
,Goepfert K
,Lima SSC
,Pinto LFR
,Hendricks D
,Parker MI
,Herceg Z
... -
《-》
Expression profiles of cancer stem cell markers: CD133, CD44, Musashi-1 and EpCAM in the cardiac mucosa-Barrett's esophagus-early esophageal adenocarcinoma-advanced esophageal adenocarcinoma sequence.
Barrett's esophagus (BE), which develops as a result of gastroesophageal reflux disease, is a preneoplastic condition for esophageal adenocarcinoma (EAC). A new hypothesis suggests that cancer is a disease of stem cells, however, their expression and pathways in BE - EAC sequence are not fully elucidated yet.
We used a panel of putative cancer stem cells markers to identify stem cells in consecutive steps of BE-related cancer progression.
Immunohistochemistry was performed on formalin-fixed, paraffin-embedded blocks from 58 patients with normal cardiac mucosa (n=5), BE (n=14), early EAC (pT1) from mucosal resection (n=17) and advanced EAC (pT1-T4) from postoperative specimens (n=22). Expression of the CD133, CD44, Musashi-1 and EpCAM was analyzed using respective monoclonal antibodies.
All markers showed a heterogeneous expression pattern, mainly at the base of the crypts of Barrett's epithelium and EAC, with positive stromal cells in metaplastic and dysplastic lesions. Immuno-expression of EpCAM, CD44 and CD133 in cardiac mucosa was significantly lower (mean immunoreactivity score (IRS)=1.2; 0.0; 0.4; respectively) compared to their expression in Barrett's metaplasia (mean IRS=4.3; 0.14; 0.7; respectively), in early adenocarcinoma (mean IRS=4.4; 0.29; 1.3; respectively) and in advanced adenocarcinoma (mean IRS=6.6; 0.7; 2.7; respectively) (p<0.05). On the contrary, Musashi-1 expression was higher in BE and early ADC compared to GM and advanced ADC (NS).
Our results suggest that the stem cells could be present in premalignant lesions. EpCAM, CD44 and CD133 expression could be candidate markers for BE progression, whereas Musashi-1 may be a marker of the small intestinal features of Barrett's mucosa.
Mokrowiecka A
,Veits L
,Falkeis C
,Musial J
,Kordek R
,Lochowski M
,Kozak J
,Wierzchniewska-Lawska A
,Vieth M
,Malecka-Panas E
... -
《-》
Comparative Molecular Analyses of Esophageal Squamous Cell Carcinoma, Esophageal Adenocarcinoma, and Gastric Adenocarcinoma.
Gastroesophageal cancers are often grouped together even though cancers that originate in the esophagus often exhibit different histological features, geographical distribution, risk factors, and clinical characteristics than those originating in the stomach. Herein, we aimed to compare the molecular characteristics of three different gastroesophageal cancer types: esophageal squamous cell carcinoma (ESCC), esophageal adenocarcinoma (EAC), and gastric adenocarcinoma (GAC).
In total, 3,342 gastroesophageal cancers were examined. Next-generation sequencing was performed on genomic DNA isolated from formalin-fixed paraffin-embedded tumor samples using the NextSeq platform. Tumor mutational burden was measured by counting all nonsynonymous missense mutations, and microsatellite instability was examined at over 7,000 target microsatellite loci. Immunohistochemistry and in situ hybridization techniques were also performed.
When compared with EAC and GAC, ESCC showed significantly lower mutational rates within APC, ARID1A, CDH1, KRAS, PTEN, and SMAD4, whereas more frequent mutations were observed in BAP1, CDKN2A, FOXO3, KMT2D, MSH6, NOTCH1, RB1, and SETD2. Human epidermal growth receptor 2 (HER2) overexpression was observed in 13% of EAC compared with 6% of GAC and 1% of ESCC (p < .0001). Compared with EAC and GAC, ESCC exhibited higher expression of programmed death-ligand 1 (PD-L1) (27.7% vs. 7.5% vs. 7.7%, p < .0001). We observed that FGF3, FGF4, FGF19, CCND1 (co-localized on 11q13), and FGFR1 were significantly more amplified in ESCC compared with EAC and GAC (p < .0001).
Molecular comparisons between ESCC, EAC, and GAC revealed distinct differences between squamous cell carcinomas and adenocarcinomas in each platform tested. Different prevalence of HER2/neu overexpression and amplification, and immune-related biomarkers between ESCC, EAC, and GAC, suggests different sensitivity to HER2-targeted therapy and immune checkpoint inhibition. These findings bring into question the validity of grouping patients with EAC and ESCC together in clinical trials and provide insight into molecular features that may represent novel therapeutic targets.
This study highlights the genomic heterogeneity of gastroesophageal cancers, showing striking molecular differences between tumors originating from different locations. Moreover, this study showed that esophageal squamous cell carcinomas exhibit a unique molecular profile, whereas gastric adenocarcinomas and esophageal adenocarcinomas have some similarities, supporting the fact that adenocarcinomas and squamous cell carcinomas are completely different diseases, irrespective of the tumor location. This raises the question of whether treatment of gastroesophageal tumors should be determined according to histological subtype and molecular targets rather than anatomical site. These findings provide insights that could enable physicians to better select patients and inform therapeutic choices in order to improve clinical outcome.
Salem ME
,Puccini A
,Xiu J
,Raghavan D
,Lenz HJ
,Korn WM
,Shields AF
,Philip PA
,Marshall JL
,Goldberg RM
... -
《-》