-
Cumulative live birth rates in low-prognosis women.
Do cumulative live birth rates (CLBRs) over multiple IVF/ICSI cycles confirm the low prognosis in women stratified according to the POSEIDON criteria?
The CLBR of low-prognosis women is ~56% over 18 months of IVF/ICSI treatment and varies between the POSEIDON groups, which is primarily attributable to the impact of female age.
The POSEIDON group recently proposed a new stratification for low-prognosis women in IVF/ICSI treatment, with the aim to define more homogenous populations for clinical trials and stimulate a patient-tailored therapeutic approach. These new criteria combine qualitative and quantitative parameters to create four groups of low-prognosis women with supposedly similar biologic characteristics.
This study analyzed the data of a Dutch multicenter observational cohort study including 551 low-prognosis women, aged <44 years, who initiated IVF/ICSI treatment between 2011 and 2014 and were treated with a fixed FSH dose of 150 IU/day in the first treatment cycle.
Low-prognosis women were categorized into one of the POSEIDON groups based on their age (younger or older than 35 years), anti-Müllerian hormone (AMH) level (above or below 0.96 ng/ml), and the ovarian response (poor or suboptimal) in their first cycle of standard stimulation. The primary outcome was the CLBR over multiple complete IVF/ICSI cycles, including all subsequent fresh and frozen-thawed embryo transfers, within 18 months of treatment. Cumulative incidence curves were obtained using an optimistic and a conservative analytic approach.
The CLBR of the low-prognosis women was on average ~56% over 18 months of IVF/ICSI treatment. Younger unexpected poor (n = 38) and suboptimal (n = 179) responders had a CLBR of ~65% and ~68%, respectively, and younger expected poor responders (n = 65) had a CLBR of ~59%. The CLBR of older unexpected poor (n = 41) and suboptimal responders (n = 102) was ~42% and ~54%, respectively, and of older expected poor responders (n = 126) ~39%. For comparison, the CLBR of younger (n = 164) and older (n = 78) normal responders with an adequate ovarian reserve was ~72% and ~58% over 18 months of treatment, respectively. No large differences were observed in the number of fresh treatment cycles between the POSEIDON groups, with an average of two fresh cycles per woman within 18 months of follow-up.
Small numbers in some (sub)groups reduced the precision of the estimates. However, our findings provide the first relevant indication of the CLBR of low-prognosis women in the POSEIDON groups. Small FSH dose adjustments between cycles were allowed, inducing therapeutic disparity. Yet, this is in accordance with current daily practice and increases the generalizability of our findings.
The CLBRs vary between the POSEIDON groups. This heterogeneity is primarily determined by a woman's age, reflecting the importance of oocyte quality. In younger women, current IVF/ICSI treatment reaches relatively high CLBR over multiple complete cycles, despite reduced quantitative parameters. In older women, the CLBR remains relatively low over multiple complete cycles, due to the co-occurring decline in quantitative and qualitative parameters. As no effective interventions exist to counteract this decline, clinical management currently relies on proper counselling.
No external funds were obtained for this study. J.A.L. is supported by a Research Fellowship grant and received an unrestricted personal grant from Merck BV. S.C.O., T.C.v.T., and H.L.T. received an unrestricted personal grant from Merck BV. C.B.L. received research grants from Merck, Ferring, and Guerbet. K.F. received unrestricted research grants from Merck Serono, Ferring, and GoodLife. She also received fees for lectures and consultancy from Ferring and GoodLife. A.H. declares that the Department of Obstetrics and Gynaecology, University Medical Centre Groningen received an unrestricted research grant from Ferring Pharmaceuticals BV, the Netherlands. J.S.E.L. has received unrestricted research grants from Ferring, Zon-MW, and The Dutch Heart Association. He also received travel grants and consultancy fees from Danone, Euroscreen, Ferring, AnshLabs, and Titus Healthcare. B.W.J.M. is supported by an National Health and Medical Research Council Practitioner Fellowship (GNT1082548) and reports consultancy work for ObsEva, Merck, and Guerbet. He also received a research grant from Merck BV and travel support from Guerbet. F.J.M.B. received monetary compensation as a member of the external advisory board for Merck Serono (the Netherlands) and Ferring Pharmaceuticals BV (the Netherlands) for advisory work for Gedeon Richter (Belgium) and Roche Diagnostics on automated AMH assay development, and for a research cooperation with Ansh Labs (USA). All other authors have nothing to declare.
Not applicable.
Leijdekkers JA
,Eijkemans MJC
,van Tilborg TC
,Oudshoorn SC
,van Golde RJT
,Hoek A
,Lambalk CB
,de Bruin JP
,Fleischer K
,Mochtar MH
,Kuchenbecker WKH
,Laven JSE
,Mol BWJ
,Torrance HL
,Broekmans FJM
,OPTIMIST study group
... -
《-》
-
Cumulative delivery rate per aspiration IVF/ICSI cycle in POSEIDON patients: a real-world evidence study of 9073 patients.
What is the cumulative delivery rate (CDR) per aspiration IVF/ICSI cycle in low-prognosis patients as defined by the Patient-Oriented Strategies Encompassing IndividualizeD Oocyte Number (POSEIDON) criteria?
The CDR of POSEIDON patients was on average ∼50% lower than in normal responders and varied across POSEIDON groups; differences were primarily determined by female age, number of embryos obtained, number of embryo transfer (ET) cycles per patient, number of oocytes retrieved, duration of infertility, and BMI.
The POSEIDON criteria aim to underline differences related to a poor or suboptimal treatment outcome in terms of oocyte quality and quantity among patients undergoing IVF/ICSI, and thus, create more homogenous groups for the clinical management of infertility and research. POSEIDON patients are presumed to be at a higher risk of failing to achieve a live birth after IVF/ICSI treatment than normal responders with an adequate ovarian reserve. The CDR per initiated/aspiration cycle after the transfer of all fresh and frozen-thawed/warmed embryos has been suggested to be the critical endpoint that sets these groups apart. However, no multicenter study has yet substantiated the validity of the POSEIDON classification in identifying relevant subpopulations of patients with low-prognosis in IVF/ICSI treatment using real-world data.
Multicenter population-based retrospective cohort study involving 9073 patients treated in three fertility clinics in Brazil, Turkey and Vietnam between 2015 and 2017.
Participants were women with infertility between 22 and 42 years old in their first IVF/ICSI cycle of standard ovarian stimulation whose fresh and/or frozen embryos were transferred until delivery of a live born or until all embryos were used. Patients were retrospectively classified according to the POSEIDON criteria into four groups based on female age, antral follicle count (AFC), and the number of oocytes retrieved or into a control group of normal responders (non-POSEIDON). POSEIDON patients encompassed younger (<35 years) and older (35 years or above) women with an AFC ≥5 and an unexpected poor (<4 retrieved oocytes) or suboptimal (4-9 retrieved oocytes) response to stimulation, and respective younger and older counterparts with an impaired ovarian reserve (i.e. expected poor responders; AFC <5). Non-POSEIDON patients were those with AFC ≥5 and >9 oocytes retrieved. CDR was computed per one aspirated cycle. Logistic regression analysis was carried out to examine the association between patient classification and CDR.
The CDR was lower in the POSEIDON patients than in the non-POSEIDON patients (33.7% vs 50.6%; P < 0.001) and differed across POSEIDON groups (younger unexpected poor responder [Group 1a; n = 212]: 27.8%, younger unexpected suboptimal responder [Group 1b; n = 1785]: 47.8%, older unexpected poor responder [Group 2a; n = 293]: 14.0%, older unexpected suboptimal responder [Group 2b; n = 1275]: 30.5%, younger expected poor responder [Group 3; n = 245]: 29.4%, and older expected poor responder [Group 4; n = 623]: 12.5%. Among unexpected suboptimal/poor responders (POSEIDON Groups 1 and 2), the CDR was twice as high in suboptimal responders (4-9 oocytes retrieved) as in poor responders (<4 oocytes) (P = 0.0004). Logistic regression analysis revealed that the POSEIDON grouping, number of embryos obtained, number of ET cycles per patient, number of oocytes collected, female age, duration of infertility and BMI were relevant predictors for CDR (P < 0.001).
Our study relied on the antral follicle count as the biomarker used for patient classification. Ovarian stimulation protocols varied across study centers, potentially affecting patient classification.
POSEIDON patients exhibit lower CDR per aspirated IVF/ICSI cycle than normal responders; the differences are mainly determined by female age and number of oocytes retrieved, thereby reflecting the importance of oocyte quality and quantity. Our data substantiate the validity of the POSEIDON criteria in identifying relevant subpopulations of patients with low-prognosis in IVF/ICSI treatment. Efforts in terms of early diagnosis, prevention, and identification of specific interventions that might benefit POSEIDON patients are warranted.
Unrestricted investigator-sponsored study grant (MS200059_0013) from Merck KGaA, Darmstadt, Germany. The funder had no role in study design, data collection, analysis, decision to publish or manuscript preparation. S.C.E. declares receipt of unrestricted research grants from Merck and lecture fees from Merck and Med.E.A. H.Y. declares receipt of payment for lectures from Merck and Ferring. L.N.V. receives speaker fees and conferences from Merck, Merck Sharp and Dohme (MSD) and Ferring and research grants from MSD and Ferring. J.F.C. declares receipt of statistical services fees from ANDROFERT Clinic. T.M.H. received speaker fees and conferences from Merck, MSD and Ferring. P.H. declares receipt of unrestricted research grants from Merck, Ferring, Gedeon Richter and IBSA and lecture fees from Merck, Gedeon Richter and Med.E.A. C.A. declares receipt of unrestricted research grants from Merck and lecture fees from Merck. The remaining authors have no conflicts of interest to disclose.
N/A.
Esteves SC
,Yarali H
,Vuong LN
,Carvalho JF
,Özbek İY
,Polat M
,Le HL
,Pham TD
,Ho TM
,Humaidan P
,Alviggi C
... -
《-》
-
Individualized FSH dosing based on ovarian reserve testing in women starting IVF/ICSI: a multicentre trial and cost-effectiveness analysis.
Is there a difference in live birth rate and/or cost-effectiveness between antral follicle count (AFC)-based individualized FSH dosing or standard FSH dosing in women starting IVF or ICSI treatment?
In women initiating IVF/ICSI, AFC-based individualized FSH dosing does not improve live birth rates or reduce costs as compared to a standard FSH dose.
In IVF or ICSI, ovarian reserve testing is often used to adjust the FSH dose in order to normalize ovarian response and optimize live birth rates. However, no robust evidence for the (cost-)effectiveness of this practice exists.
Between May 2011 and May 2014 we performed a multicentre prospective cohort study with two embedded RCTs in women scheduled for IVF/ICSI. Based on the AFC, women entered into one of the two RCTs (RCT1: AFC < 11; RCT2: AFC > 15) or the cohort (AFC 11-15). The primary outcome was ongoing pregnancy achieved within 18 months after randomization resulting in a live birth (delivery of at least one live foetus after 24 weeks of gestation). Data from the cohort with weight 0.5 were combined with both RCTs in order to conduct a strategy analysis. Potential half-integer numbers were rounded up. Differences in costs and effects between the two treatment strategies were compared by bootstrapping.
In both RCTs women were randomized to an individualized (RCT1:450/225 IU, RCT2:100 IU) or standard FSH dose (150 IU). Women in the cohort all received the standard dose (150 IU). Anti-Müllerian hormone (AMH) was measured to assess AMH post-hoc as a biomarker to individualize treatment. For RCT1 dose adjustment was allowed in subsequent cycles based on pre-specified criteria in the standard group only. For RCT2 dose adjustment was allowed in subsequent cycles in both groups. Both effectiveness and cost-effectiveness of the strategies were evaluated from an intention-to-treat perspective.
We included 1515 women, of whom 483 (31.9%) entered the cohort, 511 (33.7%) RCT1 and 521 (34.4%) RCT2. Live births occurred in 420/747 (56.3%) women in the individualized strategy and 447/769 (58.2%) women in the standard strategy (risk difference -0.019 (95% CI, -0.06 to 0.02), P = 0.39; a total of 1516 women due to rounding up the half integer numbers). The individualized strategy was more expensive (delta costs/woman = €275 (95% CI, 40 to 499)). Individualized dosing reduced the occurrence of mild and moderate ovarian hyperstimulation syndrome (OHSS) and subsequently the costs for management of these OHSS categories (costs saved/woman were €35). The analysis based on AMH as a tool for dose individualization suggested comparable results.
Despite a training programme, the AFC might have suffered from inter-observer variation. In addition, although strict cancel criteria were provided, selective cancelling in the individualized dose group (for poor response in particular) cannot be excluded as observers were not blinded for the FSH dose and small dose adjustments were allowed in subsequent cycles. However, as both first cycle live birth rates and cumulative live birth rates show no difference between strategies, the open design probably did not mask a potential benefit for the individualized group. Despite increasing consensus on using GnRH antagonist co-treatment in women predicted for a hyper response in particular, GnRH agonists were used in almost 80% of the women in this study. Hence, in those women, the AFC and bloodsampling for the post-hoc AMH analysis were performed during pituitary suppression. As the correlation between AFC and ovarian response is not compromised during GnRH agonist use, this will probably not have influenced classification of response.
Individualized FSH dosing for the IVF/ICSI population as a whole should not be pursued as it does not improve live birth rates and it increases costs. Women scheduled for IVF/ICSI with a regular menstrual cycle are therefore recommended a standard FSH starting dose of 150 IU per day. Still, safety management by individualized dosing in predicted hyper responders is open for further research.
This study was funded by The Netherlands Organisation for Health Research and Development (ZonMW number 171102020). AMH measurements were performed free of charge by Roche Diagnostics. TCT, HLT and SCO received an unrestricted personal grant from Merck BV. AH declares that the department of Obstetrics and Gynecology, University Medical Centre Groningen receives an unrestricted research grant from Ferring pharmaceutics BV, The Netherlands. CBL receives grants from Merck, Ferring and Guerbet. BWJM is supported by a NHMRC Practitioner Fellowship (GNT1082548) and reports consultancy for OvsEva, Merck and Guerbet. FJMB receives monetary compensation as a member of the external advisory board for Ferring pharmaceutics BV (the Netherlands) and Merck Serono (the Netherlands) for consultancy work for Gedeon Richter (Belgium) and Roche Diagnostics on automated AMH assay development (Switzerland) and for a research cooperation with Ansh Labs (USA). All other autors have nothing to declare.
Registered at the ICMJE-recognized Dutch Trial Registry (www.trialregister.nl). Registration number: NTR2657.
van Tilborg TC
,Oudshoorn SC
,Eijkemans MJC
,Mochtar MH
,van Golde RJT
,Hoek A
,Kuchenbecker WKH
,Fleischer K
,de Bruin JP
,Groen H
,van Wely M
,Lambalk CB
,Laven JSE
,Mol BWJ
,Broekmans FJM
,Torrance HL
,OPTIMIST study group
... -
《-》
-
Predicting the cumulative chance of live birth over multiple complete cycles of in vitro fertilization: an external validation study.
Leijdekkers JA
,Eijkemans MJC
,van Tilborg TC
,Oudshoorn SC
,McLernon DJ
,Bhattacharya S
,Mol BWJ
,Broekmans FJM
,Torrance HL
,OPTIMIST group
... -
《-》
-
The vaginal microbiome as a predictor for outcome of in vitro fertilization with or without intracytoplasmic sperm injection: a prospective study.
Is the presence or absence of certain vaginal bacteria associated with failure or success to become pregnant after an in vitro fertilization (IVF) or IVF with intracytoplasmic sperm injection (IVF-ICSI) treatment?
Microbiome profiling with the use of interspace profiling (IS-pro) technique enables stratification of the chance of becoming pregnant prior to the start of an IVF or IVF-ICSI treatment.
Live-birth rates for an IVF or IVF-ICSI treatment vary between 25 and 35% per cycle and it is difficult to predict who will or will not get pregnant after embryo transfer (ET). Recently, it was suggested that the composition of the vaginal microbiota prior to treatment might predict pregnancy outcome. Analysis of the vaginal microbiome prior to treatment might, therefore, offer an opportunity to improve the success rate of IVF or IVF-ICSI.
In a prospective cohort study, 303 women (age, 20-42 years) undergoing IVF or IVF-ICSI treatment in the Netherlands were included between June 2015 and March 2016.
Study subjects provided a vaginal sample before the start of the IVF or IVF-ICSI procedure. The vaginal microbiota composition was determined using the IS-pro technique. IS-pro is a eubacterial technique based on the detection and categorization of the length of the 16S-23S rRNA gene interspace region. Microbiome profiles were assigned to community state types based on the dominant bacterial species. The predictive accuracy of the microbiome profiles for IVF and IVF-ICSI outcome of fresh ET was evaluated by a combined prediction model based on a small number of bacterial species. From this cohort, a model was built to predict outcome of fertility treatment. This model was externally validated in a cohort of 50 women who were undergoing IVF or IVF-ICSI treatment between March 2018 and May 2018 in the Dutch division of the MVZ VivaNeo Kinderwunschzentrum Düsseldorf, Germany.
In total, the vaginal microbiota of 192 women who underwent a fresh ET could be analysed. Women with a low percentage of Lactobacillus in their vaginal sample were less likely to have a successful embryo implantation. The prediction model identified a subgroup of women (17.7%, n = 34) who had a low chance to become pregnant following fresh ET. This failure was correctly predicted in 32 out of 34 women based on the vaginal microbiota composition, resulting in a predictive accuracy of 94% (sensitivity, 26%; specificity, 97%). Additionally, the degree of dominance of Lactobacillus crispatus was an important factor in predicting pregnancy. Women who had a favourable profile as well as <60% L. crispatus had a high chance of pregnancy: more than half of these women (50 out of 95) became pregnant. In the external validation cohort, none of the women who had a negative prediction (low chance of pregnancy) became pregnant.
Because our study uses a well-defined study population, the results will be limited to the IVF or IVF-ICSI population. Whether these results can be extrapolated to the general population trying to achieve pregnancy without ART cannot be determined from these data.
Our results indicate that vaginal microbiome profiling using the IS-pro technique enables stratification of the chance of becoming pregnant prior to the start of an IVF or IVF-ICSI treatment. Knowledge of their vaginal microbiota may enable couples to make a more balanced decision regarding timing and continuation of their IVF or IVF-ICSI treatment cycles.
This study was financed by NGI Pre-Seed 2014-2016, RedMedTech Discovery Fund 2014-2017, STW Valorisation grant 1 2014-2015, STW Take-off early phase trajectory 2015-2016 and Eurostars VALBIOME grant (reference number: 8884). The employer of W.J.S.S.C. has in collaboration with ARTPred acquired a MIND subsidy to cover part of the costs of this collaboration project. The following grants are received but not used to finance this study: grants from Innovatie Prestatie Contract, MIT Haalbaarheid, other from Dutch R&D tax credit WBSO, RedMedTech Discovery Fund, (J.D.d.J.). Grants from Ferring (J.S.E.L., K.F., C.B.L. and J.M.J.S.S.), Merck Serono (K.F. and C.B.L.), Dutch Heart Foundation (J.S.E.L.), Metagenics Inc. (J.S.E.L.), GoodLife (K.F.), Guerbet (C.B.L.). R.K. is employed by ARTPred B.V. during her PhD at Erasmus Medical Centre (MC). S.A.M. has a 100% University appointment. I.S.P.H.M.S., S.A.M. and A.E.B. are co-owners of IS-Diagnostics Ltd. J.D.d.J. is co-owner of ARTPred B.V., from which he reports personal fees. P.H.M.S. reports non-financial support from ARTPred B.V. P.H.M.S., J.D.d.J. and A.E.B. have obtained patents `Microbial population analysis' (9506109) and `Microbial population analysis' (20170159108), both licenced to ARTPred B.V. J.D.d.J. and A.E.B. report patent applications `Method and kit for predicting the outcome of an assisted reproductive technology procedure' (392EPP0) and patent `Method and kit for altering the outcome of an assisted reproductive technology procedure' by ARTPred. W.J.S.S.C. received personal consultancy and educational fees from Goodlife Fertility B.V. J.S.E.L. reports personal consultancy fees from ARTPred B.V., Titus Health B.V., Danone, Euroscreen and Roche during the conduct of the study. J.S.E.L. and N.G.M.B. are co-applicants on an Erasmus MC patent (New method and kit for prediction success of in vitro fertilization) licenced to ARTPred B.V. F.J.M.B. reports personal fees from Advisory Board Ferring, Advisory Board Merck Serono, Advisory Board Gedeon Richter and personal fees from Educational activities for Ferring, outside the submitted work. K.F. reports personal fees from Ferring (commercial sponsor) and personal fees from GoodLife (commercial sponsor). C.B.L. received speakers' fee from Ferring. J.M.J.S.S. reports personal fees and other from Merck Serono and personal fees from Ferring, unrelated to the submitted paper. The other authors declare that they have no competing interests.
ISRCTN83157250. Registered 17 August 2018. Retrospectively registered.
Koedooder R
,Singer M
,Schoenmakers S
,Savelkoul PHM
,Morré SA
,de Jonge JD
,Poort L
,Cuypers WJSS
,Beckers NGM
,Broekmans FJM
,Cohlen BJ
,den Hartog JE
,Fleischer K
,Lambalk CB
,Smeenk JMJS
,Budding AE
,Laven JSE
... -
《-》