-
Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry.
Anti-PD1/PD-L1 directed immune checkpoint inhibitors (ICI) are widely used to treat patients with advanced non-small-cell lung cancer (NSCLC). The activity of ICI across NSCLC harboring oncogenic alterations is poorly characterized. The aim of our study was to address the efficacy of ICI in the context of oncogenic addiction.
We conducted a retrospective study for patients receiving ICI monotherapy for advanced NSCLC with at least one oncogenic driver alteration. Anonymized data were evaluated for clinicopathologic characteristics and outcomes for ICI therapy: best response (RECIST 1.1), progression-free survival (PFS), and overall survival (OS) from ICI initiation. The primary end point was PFS under ICI. Secondary end points were best response (RECIST 1.1) and OS from ICI initiation.
We studied 551 patients treated in 24 centers from 10 countries. The molecular alterations involved KRAS (n = 271), EGFR (n = 125), BRAF (n = 43), MET (n = 36), HER2 (n = 29), ALK (n = 23), RET (n = 16), ROS1 (n = 7), and multiple drivers (n = 1). Median age was 60 years, gender ratio was 1 : 1, never/former/current smokers were 28%/51%/21%, respectively, and the majority of tumors were adenocarcinoma. The objective response rate by driver alteration was: KRAS = 26%, BRAF = 24%, ROS1 = 17%, MET = 16%, EGFR = 12%, HER2 = 7%, RET = 6%, and ALK = 0%. In the entire cohort, median PFS was 2.8 months, OS 13.3 months, and the best response rate 19%. In a subgroup analysis, median PFS (in months) was 2.1 for EGFR, 3.2 for KRAS, 2.5 for ALK, 3.1 for BRAF, 2.5 for HER2, 2.1 for RET, and 3.4 for MET. In certain subgroups, PFS was positively associated with PD-L1 expression (KRAS, EGFR) and with smoking status (BRAF, HER2).
: ICI induced regression in some tumors with actionable driver alterations, but clinical activity was lower compared with the KRAS group and the lack of response in the ALK group was notable. Patients with actionable tumor alterations should receive targeted therapies and chemotherapy before considering immunotherapy as a single agent.
Mazieres J
,Drilon A
,Lusque A
,Mhanna L
,Cortot AB
,Mezquita L
,Thai AA
,Mascaux C
,Couraud S
,Veillon R
,Van den Heuvel M
,Neal J
,Peled N
,Früh M
,Ng TL
,Gounant V
,Popat S
,Diebold J
,Sabari J
,Zhu VW
,Rothschild SI
,Bironzo P
,Martinez-Marti A
,Curioni-Fontecedro A
,Rosell R
,Lattuca-Truc M
,Wiesweg M
,Besse B
,Solomon B
,Barlesi F
,Schouten RD
,Wakelee H
,Camidge DR
,Zalcman G
,Novello S
,Ou SI
,Milia J
,Gautschi O
... -
《-》
-
Oncogene-specific differences in tumor mutational burden, PD-L1 expression, and outcomes from immunotherapy in non-small cell lung cancer.
Non-small cell lung cancer (NSCLC) patients bearing targetable oncogene alterations typically derive limited benefit from immune checkpoint blockade (ICB), which has been attributed to low tumor mutation burden (TMB) and/or PD-L1 levels. We investigated oncogene-specific differences in these markers and clinical outcome.
Three cohorts of NSCLC patients with oncogene alterations (n=4189 total) were analyzed. Two clinical cohorts of advanced NSCLC patients treated with ICB monotherapy [MD Anderson (MDACC; n=172) and Flatiron Health-Foundation Medicine Clinico-Genomic Database (CGDB; n=894 patients)] were analyzed for clinical outcome. The FMI biomarker cohort (n=4017) was used to assess the association of oncogene alterations with TMB and PD-L1 expression.
High PD-L1 expression (PD-L1 ≥50%) rate was 19%-20% in classic EGFR, EGFR exon 20 and HER2-mutant tumors, and 34%-55% in tumors with ALK, BRAF V600E, ROS1, RET, or MET alterations. Compared with KRAS-mutant tumors, BRAF non-V600E group had higher TMB (9.6 vs KRAS 7.8 mutations/Mb, p=0.003), while all other oncogene groups had lower TMB (p<0.001). In the two clinical cohorts treated with ICB, molecular groups with EGFR, HER2, ALK, ROS1, RET, or MET alterations had short progression-free survival (PFS; 1.8-3.7 months), while BRAF V600E group was associated with greater clinical benefit from ICB (CGDB cohort: PFS 9.8 months vs KRAS 3.7 months, HR 0.66, p=0.099; MDACC cohort: response rate 62% vs KRAS 24%; PFS 7.4 vs KRAS 2.8 months, HR 0.36, p=0.026). KRAS G12C and non-G12C subgroups had similar clinical benefit from ICB in both cohorts. In a multivariable analysis, BRAF V600E mutation (HR 0.58, p=0.041), PD-L1 expression (HR 0.57, p=0.022), and high TMB (HR 0.66, p<0.001) were associated with longer PFS.
High TMB and PD-L1 expression are predictive for benefit from ICB treatment in oncogene-driven NSCLCs. NSCLC harboring BRAF mutations demonstrated superior benefit from ICB that may be attributed to higher TMB and higher PD-L1 expression in these tumors. Meanwhile EGFR and HER2 mutations and ALK, ROS1, RET, and MET fusions define NSCLC subsets with minimal benefit from ICB despite high PD-L1 expression in NSCLC harboring oncogene fusions. These findings indicate a TMB/PD-L1-independent impact on sensitivity to ICB for certain oncogene alterations.
Negrao MV
,Skoulidis F
,Montesion M
,Schulze K
,Bara I
,Shen V
,Xu H
,Hu S
,Sui D
,Elamin YY
,Le X
,Goldberg ME
,Murugesan K
,Wu CJ
,Zhang J
,Barreto DS
,Robichaux JP
,Reuben A
,Cascone T
,Gay CM
,Mitchell KG
,Hong L
,Rinsurongkawong W
,Roth JA
,Swisher SG
,Lee J
,Tsao A
,Papadimitrakopoulou V
,Gibbons DL
,Glisson BS
,Singal G
,Miller VA
,Alexander B
,Frampton G
,Albacker LA
,Shames D
,Zhang J
,Heymach JV
... -
《Journal for ImmunoTherapy of Cancer》
-
Immunotherapy for patients with advanced non-small cell lung cancer harboring oncogenic driver alterations other than EGFR: a multicenter real-world analysis.
The administration of immune checkpoint inhibitors (ICIs) in advanced non-small cell lung cancer (NSCLC) with oncogenic driver alterations other than epidermal growth factor receptor (EGFR) aroused a heated discussion. We thus aimed to evaluate ICI treatment in these patients in real-world routine clinical practice.
A multicenter, retrospective study was conducted for NSCLC patients with at least one gene alteration (KRAS, HER2, BRAF, MET, RET, ALK, ROS1) receiving ICI monotherapy or combination treatment. The data regarding clinicopathologic characteristics, clinical efficacy, and safety were investigated.
A total of 216 patients were included, the median age was 60 years, 72.7% of patients were male, and 46.8% had a smoking history. The molecular alterations involved KRAS (n=95), HER2 (n=42), BRAF (n=22), MET (n=21), RET (n=14), ALK (n=14), and ROS1 (n=8); 56.5% of patients received immunotherapy in the first-line, and the rest 43.5% were treated as a second-line and above. For the entire cohort who received immunotherapy-based regimens in the first-line, the median progression-free survival (PFS) was 7.5 months and the median overall survival (OS) was 24.8 months. For the entire cohort who received immunotherapy-based regimens in the second-line and above, the median PFS was 4.7 months and median OS was 17.1 months. KRAS mutated NSCLC treated with immunotherapy-based regimens in the first-line setting had a median PFS and OS were 7.8 and 26.1 months, respectively. Moreover, the median PFS and OS of immunotherapy-based regimens for KRAS-mutant NSCLC that progressed after chemotherapy were 5.9 and 17.1 months. Programmed death ligand 1 (PD-L1) expression level was not consistently associated with response to immunotherapy across different gene alteration subsets. In the KRAS group, PD-L1 positivity [tumor proportion score (TPS) ≥1%] was associated with better PFS and OS according to the multivariate Cox analysis. No statistically significant association was found for smoking status, age, or gender with clinical efficacy in any gene group analyses.
KRAS-mutant NSCLC could obtain clinical benefits from ICIs either for treatment-naive patients or those who have experienced progression after chemotherapy, and PD-L1 positive expression (TPS >1%) may be a potential positive predictor. For NSCLC with ALK, RET and ROS1 rearrangement, MET exon 14 skipping mutation, or BRAF V600E mutation, effectiveness of single or combined ICI therapy remains limited, therefore, targeted therapies should be considered prior to immunotherapy regimens. Future studies should address the investigation of better predictive biomarkers for immunotherapy response in oncogene-driven NSCLC.
Tian T
,Li Y
,Li J
,Xu H
,Fan H
,Zhu J
,Wang Y
,Peng F
,Gong Y
,Du Y
,Yan X
,He X
,Cali Daylan AE
,Pircher A
,Neibart SS
,Okuma Y
,Hong MH
,Huang M
,Lu Y
... -
《-》
-
Efficacy of first-line immune checkpoint inhibitors in patients with advanced NSCLC with KRAS, MET, FGFR, RET, BRAF, and HER2 alterations.
In patients with non-small cell lung cancer (NSCLC) harboring driver alterations, the efficacy of immune checkpoint inhibitors (ICIs) remains uncertain. Our study aimed to examine the first-line ICI efficacy in patients with NSCLC harboring KRAS, MET, FGFR, RET, BRAF, and HER2 alterations in a real-world setting.
This single-center, retrospective cohort study included patients with advanced NSCLC harboring KRAS, MET, FGFR, RET, BRAF, HER2 alterations or driver-negative, and were treated with first-line ICI therapy. Best overall response, progression-free survival (PFS), and overall survival (OS) were evaluated.
Seventy-eight patients with NSCLC were included (median age, 72 years): 67% were men, 15% were never-smokers, and 83% had adenocarcinoma. The driver alterations involved KRAS (n = 21), MET (n = 6), FGFR (n = 3), RET (n = 2), BRAF (n = 2), HER2 (n = 1), and driver-negative (n = 43). The partial responses for KRAS, MET, FGFR, RET, BRAF, HER2, and driver-negative were 57%, 50%, 100%, 50%, 100%, 0%, and 47%, respectively. The median PFS (months) was 16.2 (95% confidence interval [CI]: 6.3- not reached [NR]) for KRAS, 2.8 (95% CI: 2.7-NR) for MET, 11.7 (95% CI: 5.9-NR) for other alterations (FGFR, RET, BRAF, and HER2), and 10.0 (95% CI: 3.7-14.3) for driver-negative, respectively. The median OS (months) was 31.3 (95% CI: 9.0-NR) for KRAS, not reached for MET, 23.5 (95% CI: 18.3-NR) for other alterations, and 21.1 (95% CI: 15.2-NR) for driver-negative, respectively.
The benefit of the first-line ICI was similar in advanced NSCLC regardless of the driver alterations, except for MET alterations.
Uehara Y
,Watanabe K
,Hakozaki T
,Yomota M
,Hosomi Y
... -
《-》
-
Comparison of Efficacy and Safety of Single and Double Immune Checkpoint Inhibitor-Based First-Line Treatments for Advanced Driver-Gene Wild-Type Non-Small Cell Lung Cancer: A Systematic Review and Network Meta-Analysis.
Immune checkpoint inhibitors (ICIs) have improved survival for advanced wild-type non-small cell lung cancer (NSCLC) significantly, but few studies compared single ICI (SICI)-based treatments and double ICIs (DICI)-based treatments. We summarized the general efficacy of ICI-related treatments, compared the efficacy and safety of SICI-based [programmed death 1 (PD-1)/programmed death-ligand 1 (PD-L1) or cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) inhibitors ± chemotherapy (CT)] and DICI-based (PD-1/PD-L1 inhibitors+CTLA-4 inhibitors ± chemotherapy) treatments vs. CT in the first-line treatment.
We included phase II/III randomized controlled trials (RCTs), including patients with histologically confirmed stage IIIB-IV driver-gene wild-type NSCLC who received first-line ICI-related therapy in at least one arm. PubMed, Embase, and Cochrane Library were searched from January 1, 2005, to December 31, 2020. This network meta-analysis was performed in a Bayesian framework using GEMTC and JAGS package in R.3.6.1. The research was registered with PROSPERO (CRD42020184534).
Twenty RCTs were involved, including 13,032 patients and 17 treatment regimens. The results showed that ICI-based therapies could provide a pooled median overall survival (mOS) (POS) of 15.79 (95% CI: 14.85-16.73) months, and there were no significant differences in OS, progression-free survival (PFS), objective response rate (ORR), and grade 3 or higher adverse events (≥3AEs) between DICI-based treatments (POS: 14.81, 12.11-17.52 months) and SICI-based treatments (POS: 16.17, 14.59-17.74 months) in overall patients. However, DICI-based treatments had significantly prolonged the OS over SICI-based treatments in squamous and PD-L1 <1% subgroups. The ranking of OS benefit by Bayesian surface under the cumulative ranking curve (SUCRA) spectrum showed that DICI+chemotherapy ranked first for overall population and subgroups including squamous, non-squamous, any level of PD-L1 expression, smoking, male, Eastern Cooperative Oncology Group performance status (ECOG PS) = 0/1, age < 65/≥65 while SICI+CT for low tumor mutation burden (TMB), non-smoking, and female subgroups, and DICI for high TMB subgroups.
In the first-line therapy for advanced wild-type NSCLC, both SICI- and DICI-based treatments could bring significant overall advantages over chemotherapy, with comparable outcomes of efficacy and ≥3AEs. DICI-based treatments were more effective than SICI-based treatments in squamous and PD-L1 <1% subgroups. For most populations, DICI+chemotherapy could be the best choice with a survival benefit, while SICI+chemotherapy has established its position actually.
[PROSPERO], identifier [CRD42020184534].
Xu Q
,Zhang X
,Huang M
,Dai X
,Gao J
,Li S
,Sheng L
,Huang K
,Wang J
,Liu L
... -
《Frontiers in Immunology》