-
Dosimetric comparison of distal esophageal carcinoma plans for patients treated with small-spot intensity-modulated proton versus volumetric-modulated arc therapies.
Esophageal carcinoma is the eighth most common cancer in the world. Volumetric-modulated arc therapy (VMAT) is widely used to treat distal esophageal carcinoma due to high conformality to the target and good sparing of organs at risk (OAR). It is not clear if small-spot intensity-modulated proton therapy (IMPT) demonstrates a dosimetric advantage over VMAT. In this study, we compared dosimetric performance of VMAT and small-spot IMPT for distal esophageal carcinoma in terms of plan quality, plan robustness, and interplay effects.
35 distal esophageal carcinoma patients were retrospectively reviewed; 19 patients received small-spot IMPT and the remaining 16 of them received VMAT. Both plans were generated by delivering prescription doses to clinical target volumes (CTVs) on phase-averaged 4D-CT's. The dose-volume-histogram (DVH) band method was used to quantify plan robustness. Software was developed to evaluate interplay effects with randomized starting phases for each field per fraction. DVH indices were compared using Wilcoxon rank-sum test. For fair comparison, all the treatment plans were normalized to have the same CTVhigh D95% in the nominal scenario relative to the prescription dose.
In the nominal scenario, small-spot IMPT delivered statistically significantly lower liver Dmean and V30Gy[RBE] , lung Dmean , heart Dmean compared with VMAT. CTVhigh dose homogeneity and protection of other OARs were comparable between the two treatments. In terms of plan robustness, the IMPT and VMAT plans were comparable for kidney V18Gy[RBE] , liver V30Gy[RBE] , stomach V45Gy[RBE] , lung Dmean , V5Gy[RBE] , and V20Gy[RBE] , cord Dmax and D 0.03 c m 3 , liver Dmean , heart V20Gy[RBE] , and V30Gy[RBE] , but IMPT was significantly worse for CTVhigh D95% , D 2 c m 3 , and D5% -D95% , CTVlow D95% , heart Dmean , and V40Gy[RBE] , requiring careful and experienced adjustments during the planning process and robustness considerations. The small-spot IMPT plans still met the standard clinical requirements after interplay effects were considered.
Small-spot IMPT decreases doses to heart, liver, and total lung compared to VMAT as well as achieves clinically acceptable plan robustness. Our study supports the use of small-spot IMPT for the treatment of distal esophageal carcinoma.
Liu C
,Bhangoo RS
,Sio TT
,Yu NY
,Shan J
,Chiang JS
,Ding JX
,Rule WG
,Korte S
,Lara P
,Ding X
,Bues M
,Hu Y
,DeWees T
,Ashman JB
,Liu W
... -
《Journal of Applied Clinical Medical Physics》
-
Small-spot intensity-modulated proton therapy and volumetric-modulated arc therapies for patients with locally advanced non-small-cell lung cancer: A dosimetric comparative study.
To compare dosimetric performance of volumetric-modulated arc therapy (VMAT) and small-spot intensity-modulated proton therapy for stage III non-small-cell lung cancer (NSCLC).
A total of 24 NSCLC patients were retrospectively reviewed; 12 patients received intensity-modulated proton therapy (IMPT) and the remaining 12 received VMAT. Both plans were generated by delivering prescription doses to clinical target volumes (CTV) on averaged 4D-CTs. The dose-volume-histograms (DVH) band method was used to quantify plan robustness. Software was developed to evaluate interplay effects with randomized starting phases of each field per fraction. DVH indices were compared using Wilcoxon rank sum test.
Compared with VMAT, IMPT delivered significantly lower cord Dmax , heart Dmean , and lung V5 Gy[ RBE ] with comparable CTV dose homogeneity, and protection of other OARs. In terms of plan robustness, the IMPT plans were statistically better than VMAT plans in heart Dmean , but were statistically worse in CTV dose coverage, cord Dmax , lung Dmean , and V5 Gy[ RBE ] . Other DVH indices were comparable. The IMPT plans still met the standard clinical requirements with interplay effects considered.
Small-spot IMPT improves cord, heart, and lung sparing compared to VMAT and achieves clinically acceptable plan robustness at least for the patients included in this study with motion amplitude less than 11 mm. Our study supports the usage of IMPT to treat some lung cancer patients.
Liu C
,Sio TT
,Deng W
,Shan J
,Daniels TB
,Rule WG
,Lara PR
,Korte SM
,Shen J
,Ding X
,Schild SE
,Bues M
,Liu W
... -
《Journal of Applied Clinical Medical Physics》
-
Technical Note: Treatment planning system (TPS) approximations matter - comparing intensity-modulated proton therapy (IMPT) plan quality and robustness between a commercial and an in-house developed TPS for nonsmall cell lung cancer (NSCLC).
Approximate dose calculation methods were used in the nominal dose distribution and the perturbed dose distributions due to uncertainties in a commercial treatment planning system (CTPS) for robust optimization in intensity-modulated proton therapy (IMPT). We aimed to investigate whether the approximations influence plan quality, robustness, and interplay effect of the resulting IMPT plans for the treatment of locally advanced lung cancer patients.
Ten consecutively treated locally advanced nonsmall cell lung cancer (NSCLC) patients were selected. Two IMPT plans were created for each patient using our in-house developed TPS, named "Solo," and also the CTPS, EclipseTM (Varian Medical Systems, Palo Alto, CA, USA), respectively. The plans were designed to deliver prescription doses to internal target volumes (ITV) drawn by a physician on averaged four-dimensional computed tomography (4D-CT). Solo plans were imported back to CTPS, and recalculated in CTPS for fair comparison. Both plans were further verified for each patient by recalculating doses in the inhalation and exhalation phases to ensure that all plans met clinical requirements. Plan robustness was quantified on all phases using dose-volume-histograms (DVH) indices in the worst-case scenario. The interplay effect was evaluated for every plan using an in-house developed software, which randomized starting phases of each field per fraction and accumulated dose in the exhalation phase based on the patient's breathing motion pattern and the proton spot delivery in a time-dependent fashion. DVH indices were compared using Wilcoxon rank-sum test.
Compared to the plans generated using CTPS on the averaged CT, Solo plans had significantly better target dose coverage and homogeneity (normalized by the prescription dose) in the worst-case scenario [ITV D95% : 98.04% vs 96.28%, Solo vs CTPS, P = 0.020; ITV D5% -D95% : 7.20% vs 9.03%, P = 0.049] while all DVH indices were comparable in the nominal scenario. On the inhalation phase, Solo plans had better target dose coverage and cord Dmax in the nominal scenario [ITV D95% : 99.36% vs 98.45%, Solo vs CTPS, P = 0.014; cord Dmax : 20.07 vs 23.71 Gy(RBE), P = 0.027] with better target coverage and cord Dmax in the worst-case scenario [ITV D95% : 97.89% vs 96.47%, Solo vs CTPS, P = 0.037; cord Dmax : 24.57 vs 28.14 Gy(RBE), P = 0.037]. On the exhalation phase, similar phenomena were observed in the nominal scenario [ITV D95% : 99.63% vs 98.87%, Solo vs CTPS, P = 0.037; cord Dmax : 19.67 vs 23.66 Gy(RBE), P = 0.039] and in the worst-case scenario [ITV D95% : 98.20% vs 96.74%, Solo vs CTPS, P = 0.027; cord Dmax : 23.47 vs 27.93 Gy(RBE), P = 0.027]. In terms of interplay effect, plans generated by Solo had significantly better target dose coverage and homogeneity, less hot spots, and lower esophageal Dmean , and cord Dmax [ITV D95% : 101.81% vs 98.68%, Solo vs CTPS, P = 0.002; ITV D5% -D95% : 2.94% vs 7.51%, P = 0.002; cord Dmax : 18.87 vs 22.29 Gy(RBE), P = 0.014].
Solo-generated IMPT plans provide improved cord sparing, better target robustness in all considered phases, and reduced interplay effect compared with CTPS. Consequently, the approximation methods currently used in commercial TPS programs may have space for improvement in generating optimal IMPT plans for patient cases with locally advanced lung cancer.
Liu C
,Yu NY
,Shan J
,Bhangoo RS
,Daniels TB
,Chiang JS
,Ding X
,Lara P
,Patrick CL
,Archuleta JP
,DeWees T
,Hu Y
,Schild SE
,Bues M
,Sio TT
,Liu W
... -
《-》
-
Technical Note: 4D robust optimization in small spot intensity-modulated proton therapy (IMPT) for distal esophageal carcinoma.
To compare the dosimetric performances of small-spot three-dimensional (3D) and four-dimensional (4D) robustly optimized intensity-modulated proton (IMPT) plans in the presence of uncertainties and interplay effect simultaneously for distal esophageal carcinoma.
Thirteen (13) patients were selected and re-planned with small-spot ( σ ~ 2-6 mm) 3D and 4D robust optimization in IMPT, respectively. The internal clinical target volumes (CTVhigh3d , CTVlow3d ) were used in 3D robust optimization. Different CTVs (CTVhigh4d , CTVlow4d ) were generated by subtracting an inner margin of the motion amplitudes in three cardinal directions from the internal CTVs and used in 4D robust optimization. All patients were prescribed the same dose to CTVs (50 Gy[RBE] for CTVhigh3d /CTVhigh4d and 45 Gy[RBE] for CTVlow3d /CTVlow4d ). Dose-volume histogram (DVH) indices were calculated to assess plan quality. Comprehensive plan robustness evaluations that consisted of 300 perturbed scenarios (10 different motion patterns to consider irregular motion (sampled from a Gaussian distribution) and 30 different uncertainties scenarios (sampled from a 4D uniform distribution) combined), were performed to quantify robustness to uncertainties and interplay effect simultaneously. Wilcoxon signed-rank test was used for statistical analysis.
Compared to 3D robustly optimized plans, 4D robustly optimized plans had statistically improved target coverage and better sparing of lungs and heart (heart Dmean , P = 0.001; heart V30Gy[RBE] , P = 0.001) in the nominal scenario. 4D robustly optimized plans had better robustness in target dose coverage (CTVhigh4d V100% , P = 0.002) and the protection of lungs and heart (heart Dmean , P = 0.001; heart V30Gy[RBE] , P = 0.001) when uncertainties and interplay effect were considered simultaneously.
Even with small spots in IMPT, 4D robust optimization outperformed 3D robust optimization in terms of normal tissue protection and robustness to uncertainties and interplay effect simultaneously. Our findings support the use of 4D robust optimization to treat distal esophageal carcinoma with small spots in IMPT.
Feng H
,Shan J
,Ashman JB
,Rule WG
,Bhangoo RS
,Yu NY
,Chiang J
,Fatyga M
,Wong WW
,Schild SE
,Sio TT
,Liu W
... -
《-》
-
Beam angle comparison for distal esophageal carcinoma patients treated with intensity-modulated proton therapy.
To compare the dosimetric performances of intensity-modulated proton therapy (IMPT) plans generated with two different beam angle configurations (the Right-Left oblique posterior beams and the Superior-Inferior oblique posterior beams) for the treatment of distal esophageal carcinoma in the presence of uncertainties and interplay effect.
Twenty patients' IMPT plans were retrospectively selected, with 10 patients treated with the R-L oblique posterior beams (Group R-L) and the other 10 patients treated with the S-I oblique posterior beams (Group S-I). Patients in both groups were matched by their clinical target volumes (CTVs-high and low dose levels) and respiratory motion amplitudes. Dose-volume-histogram (DVH) indices were used to assess plan quality. DVH bandwidth was calculated to evaluate plan robustness. Interplay effect was quantified using four-dimensional (4D) dynamic dose calculation with random respiratory starting phase of each fraction. Normal tissue complication probability (NTCP) for heart, liver, and lung was calculated, respectively, to estimate the clinical outcomes. Wilcoxon signed-rank test was used for statistical comparison between the two groups.
Compared with plans in Group R-L, plans in Group S-I resulted in significantly lower liver Dmean and lung V30Gy[RBE] with slightly higher but clinically acceptable spinal cord Dmax . Similar plan robustness was observed between the two groups. When interplay effect was considered, plans in Group S-I performed statistically better for heart Dmean and V30Gy[RBE] , lung Dmean and V5Gy[RBE] , and liver Dmean , with slightly increased but clinically acceptable spinal cord Dmax . NTCP for liver was significantly better in Group S-I.
IMPT plans in Group S-I have better sparing of liver, heart, and lungs at the slight cost of spinal cord maximum dose protection, and are more interplay-effect resilient compared to IMPT plans in Group R-L. Our study supports the routine use of the S-I oblique posterior beams for the treatments of distal esophageal carcinoma.
Feng H
,Sio TT
,Rule WG
,Bhangoo RS
,Lara P
,Patrick CL
,Korte S
,Fatyga M
,Wong WW
,Schild SE
,Ashman JB
,Liu W
... -
《Journal of Applied Clinical Medical Physics》