Interventions to reduce ambient air pollution and their effects on health: An abridged Cochrane systematic review.
A broad range of interventions have been implemented to improve ambient air quality, and many of these have been evaluated. Yet to date no systematic review has been conducted to identify and synthesize these studies. In this systematic review, we assess the effectiveness of interventions in reducing ambient particulate matter air pollution and improving adverse health outcomes.
We searched a range of electronic databases across multiple disciplines, as well as grey literature databases, trial registries, reference lists of included studies and the contents of relevant journals, through August 2016. Eligible for inclusion were randomized and cluster randomized controlled trials, as well as several non-randomized study designs often used for evaluating air quality interventions. We included studies that evaluated interventions targeting industrial, residential, vehicular and multiple sources, with respect to their effect on mortality, morbidity and the concentrations of particulate matter (PM - including PM, PM, coarse particulate matter and combustion-related PM), as well as several criteria pollutants, including ozone, carbon monoxide, nitrogen oxides, nitrogen dioxide, nitric oxide and sulphur dioxide. We did not restrict studies based on the population, setting or comparison. Two authors independently assessed studies for inclusion, extracted data and assessed risk of bias. We assessed risk of bias using the Graphic Appraisal Tool for Epidemiological studies (GATE) for correlation studies, as modified and employed by the UK National Institute for Health and Care Excellence. We synthesized evidence narratively, as well as graphically using harvest plots. We assessed the certainty of evidence using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system.
We included 42 studies assessing 38 unique interventions. These comprised a heterogeneous mix of interventions, including those aiming to address industrial sources (n = 5; e.g. the closure of a factory), residential sources (n = 7; e.g. coal ban), vehicular sources (n = 22; e.g. low emission zones), and multiple sources (n = 4; e.g. tailored measures that target both local traffic and industrial polluters). Evidence for effectiveness was mixed. Most included studies observed either no significant association or an association favoring the intervention, with little evidence that the assessed interventions might be harmful.
Given the heterogeneity across interventions, outcomes, and methods, it was difficult to derive overall conclusions regarding the effectiveness of interventions in terms of improved air quality or health. Some evidence suggests that interventions are associated with improvements in air quality and human health, with very little evidence suggesting interventions were harmful. The evidence base highlights the challenges related to establishing the effectiveness of specific air pollution interventions on outcomes. It also points to the need for improved study design and analysis methods, as well as more uniform evaluations. The prospective planning of evaluations and an evaluation component built into the design and implementation of interventions may also be particularly beneficial.
Burns J
,Boogaard H
,Polus S
,Pfadenhauer LM
,Rohwer AC
,van Erp AM
,Turley R
,Rehfuess EA
... -
《-》
Strategies to improve the implementation of workplace-based policies or practices targeting tobacco, alcohol, diet, physical activity and obesity.
Given the substantial period of time adults spend in their workplaces each day, these provide an opportune setting for interventions addressing modifiable behavioural risk factors for chronic disease. Previous reviews of trials of workplace-based interventions suggest they can be effective in modifying a range of risk factors including diet, physical activity, obesity, risky alcohol use and tobacco use. However, such interventions are often poorly implemented in workplaces, limiting their impact on employee health. Identifying strategies that are effective in improving the implementation of workplace-based interventions has the potential to improve their effects on health outcomes.
To assess the effects of strategies for improving the implementation of workplace-based policies or practices targeting diet, physical activity, obesity, tobacco use and alcohol use.Secondary objectives were to assess the impact of such strategies on employee health behaviours, including dietary intake, physical activity, weight status, and alcohol and tobacco use; evaluate their cost-effectiveness; and identify any unintended adverse effects of implementation strategies on workplaces or workplace staff.
We searched the following electronic databases on 31 August 2017: CENTRAL; MEDLINE; MEDLINE In Process; the Campbell Library; PsycINFO; Education Resource Information Center (ERIC); Cumulative Index to Nursing and Allied Health Literature (CINAHL); and Scopus. We also handsearched all publications between August 2012 and September 2017 in two speciality journals: Implementation Science and Journal of Translational Behavioral Medicine. We conducted searches up to September 2017 in Dissertations and Theses, the WHO International Clinical Trials Registry Platform, and the US National Institutes of Health Registry. We screened the reference lists of included trials and contacted authors to identify other potentially relevant trials. We also consulted experts in the field to identify other relevant research.
Implementation strategies were defined as strategies specifically employed to improve the implementation of health interventions into routine practice within specific settings. We included any trial with a parallel control group (randomised or non-randomised) and conducted at any scale that compared strategies to support implementation of workplace policies or practices targeting diet, physical activity, obesity, risky alcohol use or tobacco use versus no intervention (i.e. wait-list, usual practice or minimal support control) or another implementation strategy. Implementation strategies could include those identified by the Effective Practice and Organisation of Care (EPOC) taxonomy such as quality improvement initiatives and education and training, as well as other strategies. Implementation interventions could target policies or practices directly instituted in the workplace environment, as well as workplace-instituted efforts encouraging the use of external health promotion services (e.g. gym membership subsidies).
Review authors working in pairs independently performed citation screening, data extraction and 'Risk of bias' assessment, resolving disagreements via consensus or a third reviewer. We narratively synthesised findings for all included trials by first describing trial characteristics, participants, interventions and outcomes. We then described the effect size of the outcome measure for policy or practice implementation. We performed meta-analysis of implementation outcomes for trials of comparable design and outcome.
We included six trials, four of which took place in the USA. Four trials employed randomised controlled trial (RCT) designs. Trials were conducted in workplaces from the manufacturing, industrial and services-based sectors. The sample sizes of workplaces ranged from 12 to 114. Workplace policies and practices targeted included: healthy catering policies; point-of-purchase nutrition labelling; environmental supports for healthy eating and physical activity; tobacco control policies; weight management programmes; and adherence to guidelines for staff health promotion. All implementation interventions utilised multiple implementation strategies, the most common of which were educational meetings, tailored interventions and local consensus processes. Four trials compared an implementation strategy intervention with a no intervention control, one trial compared different implementation interventions, and one three-arm trial compared two implementation strategies with each other and a control. Four trials reported a single implementation outcome, whilst the other two reported multiple outcomes. Investigators assessed outcomes using surveys, audits and environmental observations. We judged most trials to be at high risk of performance and detection bias and at unclear risk of reporting and attrition bias.Of the five trials comparing implementation strategies with a no intervention control, pooled analysis was possible for three RCTs reporting continuous score-based measures of implementation outcomes. The meta-analysis found no difference in standardised effects (standardised mean difference (SMD) -0.01, 95% CI -0.32 to 0.30; 164 participants; 3 studies; low certainty evidence), suggesting no benefit of implementation support in improving policy or practice implementation, relative to control. Findings for other continuous or dichotomous implementation outcomes reported across these five trials were mixed. For the two non-randomised trials examining comparative effectiveness, both reported improvements in implementation, favouring the more intensive implementation group (very low certainty evidence). Three trials examined the impact of implementation strategies on employee health behaviours, reporting mixed effects for diet and weight status (very low certainty evidence) and no effect for physical activity (very low certainty evidence) or tobacco use (low certainty evidence). One trial reported an increase in absolute workplace costs for health promotion in the implementation group (low certainty evidence). None of the included trials assessed adverse consequences. Limitations of the review included the small number of trials identified and the lack of consistent terminology applied in the implementation science field, which may have resulted in us overlooking potentially relevant trials in the search.
Available evidence regarding the effectiveness of implementation strategies for improving implementation of health-promoting policies and practices in the workplace setting is sparse and inconsistent. Low certainty evidence suggests that such strategies may make little or no difference on measures of implementation fidelity or different employee health behaviour outcomes. It is also unclear if such strategies are cost-effective or have potential unintended adverse consequences. The limited number of trials identified suggests implementation research in the workplace setting is in its infancy, warranting further research to guide evidence translation in this setting.
Wolfenden L
,Goldman S
,Stacey FG
,Grady A
,Kingsland M
,Williams CM
,Wiggers J
,Milat A
,Rissel C
,Bauman A
,Farrell MM
,Légaré F
,Ben Charif A
,Zomahoun HTV
,Hodder RK
,Jones J
,Booth D
,Parmenter B
,Regan T
,Yoong SL
... -
《-》
Public stewardship of private for-profit healthcare providers in low- and middle-income countries.
Governments use different approaches to ensure that private for-profit healthcare services meet certain quality standards. Such government guidance, referred to as public stewardship, encompasses government policies, regulatory mechanisms, and implementation strategies for ensuring accountability in the delivery of services. However, the effectiveness of these strategies in low- and middle-income countries (LMICs) have not been the subject of a systematic review.
To assess the effects of public sector regulation, training, or co-ordination of the private for-profit health sector in low- and middle-income countries.
For related systematic reviews, we searched the Cochrane Database of Systematic Reviews (CDSR) 2015, Issue 4; Database of Abstracts of Reviews of Effectiveness (DARE) 2015, Issue 1; Health Technology Assessment Database (HTA) 2015, Issue 1; all part of The Cochrane Library, and searched 28 April 2015. For primary studies, we searched MEDLINE, Epub Ahead of Print, In-Process & Other Non-Indexed Citations, MEDLINE Daily and MEDLINE 1946 to Present, OvidSP (searched 16 June 2016); Science Citation Index and Social Sciences Citation Index 1987 to present, and Emerging Sources Citation Index 2015 to present, ISI Web of Science (searched 3 May 2016 for papers citing included studies); Cochrane Central Register of Controlled Trials (CENTRAL), 2015, Issue 3, part of The Cochrane Library (including the Cochrane Effective Practice and Organisation of Care (EPOC) Group Specialised Register) (searched 28 April 2015); Embase 1980 to 2015 Week 17, OvidSP (searched 28 April 2015); Global Health 1973 to 2015 Week 16, OvidSP (searched 30 April 2015); WHOLIS, WHO (searched 30 April 2015); Science Citation Index and Social Sciences Citation Index 1975 to present, ISI Web of Science (searched 30 April 2015); Health Management, ProQuest (searched 22 November 2013). In addition, in April 2016, we searched the reference lists of relevant articles, WHO International Clinical Trials Registry Platform, Clinicaltrials.gov, and various electronic databases of grey literature.
Randomised trials, non-randomised trials, interrupted time series studies, or controlled before-after studies.
Two authors independently assessed study eligibility and extracted data, comparing their results and resolving discrepancies by consensus. We expressed study results as risk ratios (RR) or mean differences (MD) with 95% confidence intervals (CI), where appropriate, and assessed the certainty of the evidence using Grades of Recommendation, Assessment, Development and Evaluation (GRADE). We did not conduct meta-analysis because of heterogeneity of interventions and study designs.
We identified 20,177 records, 50 of them potentially eligible. We excluded 39 potentially eligible studies because they did not involve a rigorous evaluation of training, regulation, or co-ordination of private for-profit healthcare providers in LMICs; five studies identified after the review was submitted are awaiting assessment; and six studies met our inclusion criteria. Two included studies assessed training alone; one assessed regulation alone; three assessed a multifaceted intervention involving training and regulation; and none assessed co-ordination. All six included studies targeted private for-profit pharmacy workers in Africa and Asia.Three studies found that training probably increases sale of oral rehydration solution (one trial in Kenya, 106 pharmacies: RR 3.04, 95% CI 1.37 to 6.75; and one trial in Indonesia, 87 pharmacies: RR 1.41, 95% CI 1.03 to 1.93) and dispensing of anti-malarial drugs (one trial in Kenya, 293 pharmacies: RR 8.76, 95% CI 0.94 to 81.81); moderate-certainty evidence.One study conducted in the Lao People's Democratic Republic shows that regulation of the distribution and sale of registered pharmaceutical products may improve composite pharmacy indicators (one trial, 115 pharmacies: improvements in four of six pharmacy indicators; low-certainty evidence).The outcome in three multifaceted intervention studies was the quality of pharmacy practice; including the ability to ask questions, give advice, and provide appropriate treatment. The trials applied regulation, training, and peer influence in sequence; and the study design does not permit separation of the effects of the different interventions. Two trials conducted among 136 pharmacies in Vietnam found that the multifaceted intervention may improve the quality of pharmacy practice; but the third study, involving 146 pharmacies in Vietnam and Thailand, found that the intervention may have little or no effects on the quality of pharmacy practice (low-certainty evidence).Only two studies (both conducted in Vietnam) reported cost data, with no rigorous assessment of the economic implications of implementing the interventions in resource-constrained settings. No study reported data on equity, mortality, morbidity, adverse effects, satisfaction, or attitudes.
Training probably improves quality of care (i.e. adherence to recommended practice), regulation may improve quality of care, and we are uncertain about the effects of co-ordination on quality of private for-profit healthcare services in LMICs. The likelihood that further research will find the effect of training to be substantially different from the results of this review is moderate; implying that monitoring of the impact is likely to be needed if training is implemented. The low certainty of the evidence for regulation implies that the likelihood of further research finding the effect of regulation to be substantially different from the results of this review is high. Therefore, an impact evaluation is warranted if government regulation of private for-profit providers is implemented in LMICs. Rigorous evaluations of these interventions should also assess other outcomes such as impacts on equity, cost implications, mortality, morbidity, and adverse effects.
Wiysonge CS
,Abdullahi LH
,Ndze VN
,Hussey GD
... -
《-》