NfiR, a New Regulatory Noncoding RNA (ncRNA), Is Required in Concert with the NfiS ncRNA for Optimal Expression of Nitrogenase Genes in Pseudomonas stutzeri A1501.

来自 PUBMED

作者:

Zhan YDeng ZYan YZhang HLu CYang ZShang LHuang YLv FLiu YLiu YWang SChen SZhang XXCheng QLin M

展开

摘要:

Expression of nitrogenase genes (nifHDK) is strictly regulated at both transcriptional and posttranscriptional levels. Efficient nitrogenase activity requires maintaining sufficient levels of nif mRNAs, yet the underlying mechanism is not fully understood due to its complexity. We have previously shown that a novel regulatory noncoding RNA (ncRNA), NfiS, optimizes nitrogen fixation through targeting nifK mRNA in Pseudomonas stutzeri A1501. Here, we report the identification and characterization of a second ncRNA inducible under nitrogen fixation conditions (nitrogen-free and microaerobic conditions), termed NfiR (for nitrogen fixation condition-inducible ncRNA), the expression of which is dependent on two global regulators, NtrC and Hfq. Comparative phenotypic and proteomic analyses of an nfiR mutant identify a role of NfiR in regulating the expression of nitrogenase genes. Further microscale thermophoresis and genetic complementation showed that an 11-nucleotide (nt) sequence in the stem-loop structure of NfiR (nucleotides 12 to 22) pairs with its counterpart in the coding region of nifD mRNA (nucleotides 1194 to 1207) by eight nucleotides. Significantly, deletion of nfiR caused a 60% reduction of nitrogenase activity, and the half-life of nifD mRNA was reduced from 20 min for the wild type to 15 min for the ΔnfiR mutant. With regard to nitrogenase activity and stability of the nifD and nifK transcripts, phenotypes were more severe for the double deletion mutant lacking nfiR and nfiS, suggesting that NfiR, in concert with NfiS, optimizes nitrogenase production at the posttranscriptional level.IMPORTANCE Biological nitrogen fixation is an energy-expensive process requiring the hydrolysis of 16 ATPs. Consequently, the expression of nif genes is highly regulated at both transcriptional and posttranscriptional levels through complex regulatory networks. Global regulation involves a number of regulatory proteins, such as the nif-specific activator NifA and the global nitrogen regulator NtrC, as well as various regulatory ncRNAs. We show that the two P. stutzeri ncRNAs, namely NfiS and NfiR (for nitrogen fixation condition-inducible ncRNA), optimize nitrogen fixation and environmental stress responses. NfiS and NfiR respond differently to various environmental signals and differ in their secondary structures. In addition, the two ncRNAs target the mRNAs of nifK and nifD, respectively. Such ncRNA-based posttranscriptional regulation of nitrogenase expression might be an evolved survival strategy, particularly in nitrogen-limiting environments. This study not only highlights the significant roles of regulatory ncRNAs in the coordination and fine tuning of various physiological processes but also provides a new paradigm for posttranscriptional regulation in nitrogen-fixing bacteria.

收起

展开

DOI:

10.1128/AEM.00762-19

被引量:

15

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(256)

参考文献(46)

引证文献(15)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读