Gestational weight gain below recommendations and adverse maternal and child health outcomes for pregnancies with overweight or obesity: a United States cohort study.
The current Institute of Medicine (IOM) pregnancy weight gain guidelines were developed using the best available evidence but were limited by substantial knowledge gaps. Some have raised concern that the guidelines for individuals affected by overweight or obesity are too high and contribute to short- and long-term complications for the mother and child.
To determine the association between pregnancy weight gain below the lower limit of the current IOM recommendations and risk of 10 adverse maternal and child health outcomes among individuals with overweight and obesity.
We used data from a prospective cohort study of United States nulliparae with prepregnancy overweight (n = 955) or obesity (n = 897) followed from the first trimester to 2-7 y postpartum. We used multivariable Poisson regression to relate pregnancy weight gain z-scores with a severity-weighted composite outcome consisting of ≥1 of 10 adverse outcomes (gestational diabetes, preeclampsia, unplanned cesarean delivery, maternal postpartum weight increase >10 kg, maternal postpartum metabolic syndrome, infant death, stillbirth, preterm birth, small-for-gestational age birth, and childhood obesity).
Pregnancy weight gain z-scores below, within, and above the IOM-recommended ranges occurred in 5%, 13%, and 80% of pregnancies with overweight and 17%, 13%, and 70% of pregnancies with obesity. There was a positive association between pregnancy weight gain z-scores and all adverse maternal outcomes, childhood obesity, and the composite outcome. Pregnancy weight gain z-scores below the lower limit of the recommended ranges (<6.8 kg for overweight, <5 kg for obesity) were not associated with the severity-weighted composite outcome. For example, compared with the lower limit, adjusted rate ratios (95% confidence interval) for z-scores of -2 standard deviations in pregnancies with overweight (equivalent to 3.6 kg at 40 wk) and obesity (-2.8 kg at 40 wk) were 0.99 (95% confidence interval [CI]: 0.91, 1.06) and 0.97 (95% CI: 0.87, 1.07).
These findings support arguments to decrease the lower limit of recommended weight gain ranges in these prepregnancy body mass index groups.
Bodnar LM
,Johansson K
,Himes KP
,Khodyakov D
,Abrams B
,Parisi SM
,Hutcheon JA
... -
《-》
Gestational age at birth and body size from infancy through adolescence: An individual participant data meta-analysis on 253,810 singletons in 16 birth cohort studies.
Preterm birth is the leading cause of perinatal morbidity and mortality and is associated with adverse developmental and long-term health outcomes, including several cardiometabolic risk factors and outcomes. However, evidence about the association of preterm birth with later body size derives mainly from studies using birth weight as a proxy of prematurity rather than an actual length of gestation. We investigated the association of gestational age (GA) at birth with body size from infancy through adolescence.
We conducted a two-stage individual participant data (IPD) meta-analysis using data from 253,810 mother-child dyads from 16 general population-based cohort studies in Europe (Denmark, Finland, France, Italy, Norway, Portugal, Spain, the Netherlands, United Kingdom), North America (Canada), and Australasia (Australia) to estimate the association of GA with body mass index (BMI) and overweight (including obesity) adjusted for the following maternal characteristics as potential confounders: education, height, prepregnancy BMI, ethnic background, parity, smoking during pregnancy, age at child's birth, gestational diabetes and hypertension, and preeclampsia. Pregnancy and birth cohort studies from the LifeCycle and the EUCAN-Connect projects were invited and were eligible for inclusion if they had information on GA and minimum one measurement of BMI between infancy and adolescence. Using a federated analytical tool (DataSHIELD), we fitted linear and logistic regression models in each cohort separately with a complete-case approach and combined the regression estimates and standard errors through random-effects study-level meta-analysis providing an overall effect estimate at early infancy (>0.0 to 0.5 years), late infancy (>0.5 to 2.0 years), early childhood (>2.0 to 5.0 years), mid-childhood (>5.0 to 9.0 years), late childhood (>9.0 to 14.0 years), and adolescence (>14.0 to 19.0 years). GA was positively associated with BMI in the first decade of life, with the greatest increase in mean BMI z-score during early infancy (0.02, 95% confidence interval (CI): 0.00; 0.05, p < 0.05) per week of increase in GA, while in adolescence, preterm individuals reached similar levels of BMI (0.00, 95% CI: -0.01; 0.01, p 0.9) as term counterparts. The association between GA and overweight revealed a similar pattern of association with an increase in odds ratio (OR) of overweight from late infancy through mid-childhood (OR 1.01 to 1.02) per week increase in GA. By adolescence, however, GA was slightly negatively associated with the risk of overweight (OR 0.98 [95% CI: 0.97; 1.00], p 0.1) per week of increase in GA. Although based on only four cohorts (n = 32,089) that reached the age of adolescence, data suggest that individuals born very preterm may be at increased odds of overweight (OR 1.46 [95% CI: 1.03; 2.08], p < 0.05) compared with term counterparts. Findings were consistent across cohorts and sensitivity analyses despite considerable heterogeneity in cohort characteristics. However, residual confounding may be a limitation in this study, while findings may be less generalisable to settings in low- and middle-income countries.
This study based on data from infancy through adolescence from 16 cohort studies found that GA may be important for body size in infancy, but the strength of association attenuates consistently with age. By adolescence, preterm individuals have on average a similar mean BMI to peers born at term.
Vinther JL
,Cadman T
,Avraam D
,Ekstrøm CT
,Sørensen TIA
,Elhakeem A
,Santos AC
,Pinot de Moira A
,Heude B
,Iñiguez C
,Pizzi C
,Simons E
,Voerman E
,Corpeleijn E
,Zariouh F
,Santorelli G
,Inskip HM
,Barros H
,Carson J
,Harris JR
,Nader JL
,Ronkainen J
,Strandberg-Larsen K
,Santa-Marina L
,Calas L
,Cederkvist L
,Popovic M
,Charles MA
,Welten M
,Vrijheid M
,Azad M
,Subbarao P
,Burton P
,Mandhane PJ
,Huang RC
,Wilson RC
,Haakma S
,Fernández-Barrés S
,Turvey S
,Santos S
,Tough SC
,Sebert S
,Moraes TJ
,Salika T
,Jaddoe VWV
,Lawlor DA
,Nybo Andersen AM
... -
《-》
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.
About 20-30% of older adults (≥ 65 years old) experience one or more falls each year, and falls are associated with substantial burden to the health care system, individuals, and families from resulting injuries, fractures, and reduced functioning and quality of life. Many interventions for preventing falls have been studied, and their effectiveness, factors relevant to their implementation, and patient preferences may determine which interventions to use in primary care. The aim of this set of reviews was to inform recommendations by the Canadian Task Force on Preventive Health Care (task force) on fall prevention interventions. We undertook three systematic reviews to address questions about the following: (i) the benefits and harms of interventions, (ii) how patients weigh the potential outcomes (outcome valuation), and (iii) patient preferences for different types of interventions, and their attributes, shown to offer benefit (intervention preferences).
We searched four databases for benefits and harms (MEDLINE, Embase, AgeLine, CENTRAL, to August 25, 2023) and three for outcome valuation and intervention preferences (MEDLINE, PsycINFO, CINAHL, to June 9, 2023). For benefits and harms, we relied heavily on a previous review for studies published until 2016. We also searched trial registries, references of included studies, and recent reviews. Two reviewers independently screened studies. The population of interest was community-dwelling adults ≥ 65 years old. We did not limit eligibility by participant fall history. The task force rated several outcomes, decided on their eligibility, and provided input on the effect thresholds to apply for each outcome (fallers, falls, injurious fallers, fractures, hip fractures, functional status, health-related quality of life, long-term care admissions, adverse effects, serious adverse effects). For benefits and harms, we included a broad range of non-pharmacological interventions relevant to primary care. Although usual care was the main comparator of interest, we included studies comparing interventions head-to-head and conducted a network meta-analysis (NMAs) for each outcome, enabling analysis of interventions lacking direct comparisons to usual care. For benefits and harms, we included randomized controlled trials with a minimum 3-month follow-up and reporting on one of our fall outcomes (fallers, falls, injurious fallers); for the other questions, we preferred quantitative data but considered qualitative findings to fill gaps in evidence. No date limits were applied for benefits and harms, whereas for outcome valuation and intervention preferences we included studies published in 2000 or later. All data were extracted by one trained reviewer and verified for accuracy and completeness. For benefits and harms, we relied on the previous review team's risk-of-bias assessments for benefit outcomes, but otherwise, two reviewers independently assessed the risk of bias (within and across study). For the other questions, one reviewer verified another's assessments. Consensus was used, with adjudication by a lead author when necessary. A coding framework, modified from the ProFANE taxonomy, classified interventions and their attributes (e.g., supervision, delivery format, duration/intensity). For benefit outcomes, we employed random-effects NMA using a frequentist approach and a consistency model. Transitivity and coherence were assessed using meta-regressions and global and local coherence tests, as well as through graphical display and descriptive data on the composition of the nodes with respect to major pre-planned effect modifiers. We assessed heterogeneity using prediction intervals. For intervention-related adverse effects, we pooled proportions except for vitamin D for which we considered data in the control groups and undertook random-effects pairwise meta-analysis using a relative risk (any adverse effects) or risk difference (serious adverse effects). For outcome valuation, we pooled disutilities (representing the impact of a negative event, e.g. fall, on one's usual quality of life, with 0 = no impact and 1 = death and ~ 0.05 indicating important disutility) from the EQ-5D utility measurement using the inverse variance method and a random-effects model and explored heterogeneity. When studies only reported other data, we compared the findings with our main analysis. For intervention preferences, we used a coding schema identifying whether there were strong, clear, no, or variable preferences within, and then across, studies. We assessed the certainty of evidence for each outcome using CINeMA for benefit outcomes and GRADE for all other outcomes.
A total of 290 studies were included across the reviews, with two studies included in multiple questions. For benefits and harms, we included 219 trials reporting on 167,864 participants and created 59 interventions (nodes). Transitivity and coherence were assessed as adequate. Across eight NMAs, the number of contributing trials ranged between 19 and 173, and the number of interventions ranged from 19 to 57. Approximately, half of the interventions in each network had at least low certainty for benefit. The fallers outcome had the highest number of interventions with moderate certainty for benefit (18/57). For the non-fall outcomes (fractures, hip fracture, long-term care [LTC] admission, functional status, health-related quality of life), many interventions had very low certainty evidence, often from lack of data. We prioritized findings from 21 interventions where there was moderate certainty for at least some benefit. Fourteen of these had a focus on exercise, the majority being supervised (for > 2 sessions) and of long duration (> 3 months), and with balance/resistance and group Tai Chi interventions generally having the most outcomes with at least low certainty for benefit. None of the interventions having moderate certainty evidence focused on walking. Whole-body vibration or home-hazard assessment (HHA) plus exercise provided to everyone showed moderate certainty for some benefit. No multifactorial intervention alone showed moderate certainty for any benefit. Six interventions only had very-low certainty evidence for the benefit outcomes. Two interventions had moderate certainty of harmful effects for at least one benefit outcome, though the populations across studies were at high risk for falls. Vitamin D and most single-component exercise interventions are probably associated with minimal adverse effects. Some uncertainty exists about possible adverse effects from other interventions. For outcome valuation, we included 44 studies of which 34 reported EQ-5D disutilities. Admission to long-term care had the highest disutility (1.0), but the evidence was rated as low certainty. Both fall-related hip (moderate certainty) and non-hip (low certainty) fracture may result in substantial disutility (0.53 and 0.57) in the first 3 months after injury. Disutility for both hip and non-hip fractures is probably lower 12 months after injury (0.16 and 0.19, with high and moderate certainty, respectively) compared to within the first 3 months. No study measured the disutility of an injurious fall. Fractures are probably more important than either falls (0.09 over 12 months) or functional status (0.12). Functional status may be somewhat more important than falls. For intervention preferences, 29 studies (9 qualitative) reported on 17 comparisons among single-component interventions showing benefit. Exercise interventions focusing on balance and/or resistance training appear to be clearly preferred over Tai Chi and other forms of exercise (e.g., yoga, aerobic). For exercise programs in general, there is probably variability among people in whether they prefer group or individual delivery, though there was high certainty that individual was preferred over group delivery of balance/resistance programs. Balance/resistance exercise may be preferred over education, though the evidence was low certainty. There was low certainty for a slight preference for education over cognitive-behavioral therapy, and group education may be preferred over individual education.
To prevent falls among community-dwelling older adults, evidence is most certain for benefit, at least over 1-2 years, from supervised, long-duration balance/resistance and group Tai Chi interventions, whole-body vibration, high-intensity/dose education or cognitive-behavioral therapy, and interventions of comprehensive multifactorial assessment with targeted treatment plus HHA, HHA plus exercise, or education provided to everyone. Adding other interventions to exercise does not appear to substantially increase benefits. Overall, effects appear most applicable to those with elevated fall risk. Choice among effective interventions that are available may best depend on individual patient preferences, though when implementing new balance/resistance programs delivering individual over group sessions when feasible may be most acceptable. Data on more patient-important outcomes including fall-related fractures and adverse effects would be beneficial, as would studies focusing on equity-deserving populations and on programs delivered virtually.
Not registered.
Pillay J
,Gaudet LA
,Saba S
,Vandermeer B
,Ashiq AR
,Wingert A
,Hartling L
... -
《Systematic Reviews》