Aloperine induces apoptosis and G2/M cell cycle arrest in hepatocellular carcinoma cells through the PI3K/Akt signaling pathway.
Hepatocellular carcinoma (HCC) ranks third among the most common causes of cancer-related deaths worldwide. The chemotherapy for HCC is still insufficient, so far. In searching for effective anti-HCC agents from traditional Chinese medicine, we discovered that aloperine (ALO), a quinolizidine alkaloid from Sophora alopecuroides L., exerts anti-HCC activities. However, the effects of ALO on HCC have been rarely studied, and its underlying mechanisms remain unknown.
This study aims to evaluate the anti-HCC activities of ALO and explore its underlying mechanisms.
MTT assay and colony formation assay were used to investigate the anti-proliferative effects of ALO on human HCC Hep3B and Huh7 cells. Hoechst 33258 staining was used to observe the morphological changes of cells after ALO treatment. Flow cytometry was used to analyze apoptosis induction, the collapse of the mitochondrial membrane potential and cell cycle distribution. Western blotting was used to examine the expression levels of proteins associated with apoptosis and cell cycle arrest, and key proteins in the PI3K/Akt signaling pathway. Small interfering RNA (siRNA) transfection was used to investigate the role of Akt in ALO-induced apoptosis and cell cycle arrest. Zebrafish tumor model was used to evaluate the anti-HCC effects of ALO in vivo.
ALO inhibited the proliferation of Hep3B and Huh7 cells. ALO induced apoptosis in HCC cells, which was accompanied by the loss of mitochondrial potential, the release of cytochrome c into cytosol, as well as the increased cleavages of caspase-9, caspase-3 and PARP. Moreover, ALO induced G2/M cell cycle arrest by downregulating the expression levels of cdc25C, cdc2 and cyclin B1. In addition, ALO inhibited activation of the PI3K/Akt signaling pathway by decreasing the expression levels of p110α, p85, Akt and p-Akt (Ser473). Further study showed that inhibition of Akt by siRNA augmented ALO-mediated apoptosis and G2/M cell cycle arrest in HCC cells. Critically, ALO inhibited the growth of Huh7 cells in vivo.
We first demonstrated that ALO induced apoptosis and G2/M cell cycle arrest in HCC cells through inhibition of the PI3K/Akt signaling pathway. This study provides a rationale for ALO as a potential chemotherapeutic agent for HCC.
Liu JS
,Huo CY
,Cao HH
,Fan CL
,Hu JY
,Deng LJ
,Lu ZB
,Yang HY
,Yu LZ
,Mo ZX
,Yu ZL
... -
《-》
Lappaconitine Sulfate Inhibits Proliferation and Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells through the Reactive Oxygen Species-Dependent Mitochondrial Pathway.
Hepatocellular carcinoma (HCC) is the third leading cause of tumor-related deaths in the word. Lappaconitine (LA), a diterpenoid alkaloid, exerts antitumor activities. However, the effects and mechanisms of LA sulfate (LS) on HCC remain unclear. This study evaluated the activities and explored the underlying mechanisms of LS in HCC cell line HepG2 cells.
The cell viability and proliferation were evaluated using the Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assay, respectively. The cell cycle distribution was detected by propidium iodide (PI) staining assay. The apoptosis was detected by Annexin -V-fluorescein isothiocyanate (FITC)/PI double staining assay. The cell cycle arrest and apoptosis-related proteins were estimated by western blot analysis. The mitochondrial membrane potential (MMP) was -determined through the 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimi-dazolyl carbocyanine iodide (JC-1) staining assay. The reactive oxygen species (ROS) was monitored by 20-70-dichlorofluorescein diacetate (DCFH-DA) staining assay. In vivo antitumor activities were investigated by HepG2 xenograft model.
Our results showed that LS significantly -inhibited the viability and proliferation of HepG2 cells. LS triggered G0/G1 cell cycle arrest, apoptosis and caspase activation. Furthermore, LS induced MMP loss and ROS accumulation. Additionally, LS suppressed the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase 3β (GSK3β) signaling pathway. An in vivo assay showed that LS exhibited a pronounced antitumor effect in nude mice bearing HepG2 xenografts.
Our results demonstrated that LS is a promising therapeutic agent for HCC directed -toward the proliferation inhibition and the induction of apoptosis.
Zhang X
,Ma J
,Song N
,Guo Y
,Hui L
,Sang C
... -
《-》
Erinacine Facilitates the Opening of the Mitochondrial Permeability Transition Pore Through the Inhibition of the PI3K/ Akt/GSK-3β Signaling Pathway in Human Hepatocellular Carcinoma.
Erinacine, which is extracted from the medicinal mushroom Hericium erinaceus, is known to play anticancer roles in human cancers. The following study aims to investigate the role of erinacine in the opening of the mitochondrial permeability transition pore (MPTP) in hepatocellular carcinoma (HCC) through the PI3K/Akt/GSK-3β signaling pathway and highlights the applicability of erinacine in HCC treatments.
HCC and paracancerous tissues were obtained from 85 HCC patients who've undergone surgical resection. Immunohistochemistry was adopted to detect positive expression of PI3K, Akt, and GSK-3β. Treatment of HepG-2 with LY294002 (an inhibitor of the PI3K/Akt/GSK-3β signaling pathway) and different concentration of erinacine was performed to determine the involvement of LY294002 in erinacine action. The expressions of PI3K, Akt, GSK-3β, CyclinD1, Vimentin, β-catenin, Bcl-2, E-cadherin, Bax, and caspase-9 were determined by RT-qPCR and Western blot analysis. Cell viability, colony formation rate, migration, invasion, cycle, and apoptosis were detected by MTT, colony formation, wound healing assay, Transwell assay, and flow cytometry, respectively. The size and weight of xenograft tumors were observed in nude mice. Mitochondrial membrane potential in HepG-2 was determined using laser scanning confocal microscopy following JC-1 staining. Mitochondrial Ca2+ indicator Rhod-2, AM was used to detect the changes of mitochondrial Ca2+, while western blot analysis was employed to detect the presence levels of cytochrome C (cyt-C).
The results revealed that PI3K, Akt, and GSK-3β were up-regulated in HCC tissues. Erinacine or LY294002 led to a decrease in mitochondrial membrane potential, increase in intracellular mitochondrial Ca2+, and the release of cyt-C in mitochondria. In addition, Erinacine was found to decrease the mitochondrial membrane potential, expression of PI3K, Akt, GSK-3β, CyclinD1, Vimentin, β-catenin, and Bcl-2, cell proliferation, colony formation ability, migration, invasion, and xenograft tumor size, while E-cadherin, Bax, and caspase-9 expression, and cell apoptosis were elevated in a dose-dependent manner. Erinacine also stimulated the effects of LY294002 on the HCC. Following the addition of 500 μM Erinacine and MPTP opening inhibitor CsA, we found that the mitochondrial membrane potential level increased, while mitochondrial Ca2+ and Cyt-C decreased from the mitochondria.
The results from the study demonstrated that erinacine induced MPTP opening, facilitates the release of cyt-C, and inhibited cell proliferation, migration, and invasion, while it promotes apoptosis by inactivating the PI3K/Akt/GSK-3β signaling pathway, preventing the progression of HCC.
Zhou LJ
,Mo YB
,Bu X
,Wang JJ
,Bai J
,Zhang JW
,Cheng AB
,Ma JH
,Wang YW
,Xie YX
... -
《-》
1β-OH-arenobufagin induces mitochondrial apoptosis in hepatocellular carcinoma through the suppression of mTOR signaling pathway.
Chansu, dried secretions from Bufonidae, has long been used for cancer treatment as a traditional Chinese medicine. In searching for effective anti-hepatoma agents from Chansu, our preliminary drug screening found that a bufadienolide, namely 1β-hydroxyl-arenobufagin (1β-OH-ABF), displays anti-hepatoma activities. However, the anti-hepatoma effects and molecular mechanisms of 1β-OH-ABF have not been defined.
To evaluate the anti-hepatoma activity of 1β-OH-ABF against liver cancer Hep3B and HepG2 cells in vitro and in vivo, as well as explore the underlying mechanisms.
The anti-proliferative effects of 1β-OH-ABF on liver cancer Hep3B, HepG2, HuH7, SK-HEP-1 and normal hepatocyte LO2 cells were examined by MTT assay and colony formation assay. Hoechst 33258 staining and Annexin V-FITC/PI staining assay were used to analyze apoptosis induced by 1β-OH-ABF. The collapse of the mitochondrial membrane potential (ΔΨm) was detected by JC-1 staining assay. Western blotting was used to examine the expression levels of targeted proteins. The role of mTOR in 1β-OH-ABF-induced apoptosis was investigated using small interfering RNA (siRNA) transfection. Zebrafish xenograft model was established to evaluate the anti-hepatoma effects of 1β-OH-ABF in vivo.
We found that 1β-OH-ABF inhibits the proliferation of Hep3B, HepG2, HuH7, SK-HEP-1 cells but has little cytotoxicity towards LO2 cells. 1β-OH-ABF induces mitochondria dysfunction and triggers mitochondria apoptotic pathway, which is accompanied by the loss of ΔΨm, upregulation and translocation of Bax, as well as cleavages of caspase-9, caspase-3 and PARP. Mechanistically, 1β-OH-ABF markedly decreases the expression level of p-AKT/AKT and p-mTOR (Ser2248 and Ser2481)/mTOR in a time-dependent manner. Inhibition of mTOR by siRNA strengthens 1β-OH-ABF-mediated apoptosis. Critically, 1β-OH-ABF shows a marked in vivo anti-hepatoma effect on human Hep3B cell xenografts in zebrafish model.
1β-OH-ABF induces mitochondrial apoptosis through the suppression of mTOR signaling in vitro and in vivo, indicating that 1β-OH-ABF may serve as a potential agent for the treatment of liver cancer.
Deng LJ
,Lei YH
,Quan JY
,Li BJ
,Zhang DM
,Tian HY
,Chen Y
,Zhang EX
,Chen L
,Ye WC
,Ning WM
,Yu LZ
,Liu JS
... -
《-》