LEM domain containing 1 promotes proliferation via activating the PI3K/Akt signaling pathway in gastric cancer.

来自 PUBMED

作者:

Li QGe YChen XWang LXia YXu ZLi ZWang WYang LZhang DXu Z

展开

摘要:

Gastric cancer (GC) is one of the most common cancers worldwide and has especially high morbidity and mortality in China. LEM domain containing 1 (LEMD1), an important cancer-testis antigen, has been reported to be overexpressed in various cancers and promotes the progression of cancers. However, the biological characteristics of LEMD1 remain to be explored in GC. The connection between LEMD1 expression and GC progression was analyzed by using The Cancer Genome Atlas datasets and our human microarray datasets. A Kaplan-Meier plot was used to analyze the relationship between LEMD1 expression and prognosis. The expression of LEMD1 was analyzed by quantitative real-time polymerase chain reaction and Western blot, and the proliferation ability of GC cells was analyzed by cell proliferation and colony formation assays and 5-ethynyl-2'-deoxyuridine analysis. The cell cycle and apoptosis were analyzed by flow cytometry. Furthermore, subcutaneously implanted tumor models in nude mice were used to demonstrate the role of LEMD1 in promoting tumor proliferation in vivo. In this study, we demonstrated that the LEMD1 expression level was increased in GC tissues and cells compared with normal tissues and GES-1. The in vivo and in vitro assays showed that LEMD1 promoted GC cell proliferation by regulating the cell cycle and apoptosis. Moreover, we showed that LEMD1 regulated cell proliferation by activating the phosphatidylinositol 3 kinase (PI3K) / protein kinase B (AKT) signaling pathway. Overall, the results of our study suggest that LEMD1 contributes to GC proliferation by regulating the cell cycle and apoptosis via activation of the PI3K/AKT signaling pathway. LEMD1 may act as a potential target for GC treatment.

收起

展开

DOI:

10.1002/jcb.28783

被引量:

13

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(345)

参考文献(0)

引证文献(13)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读