The value of quantitative CT texture analysis in differentiation of angiomyolipoma without visible fat from clear cell renal cell carcinoma on four-phase contrast-enhanced CT images.

来自 PUBMED

作者:

You MWKim NChoi HJ

展开

摘要:

To investigate the diagnostic performance and usefulness of texture analysis in differentiating angiomyolipoma (AML) without visible fat from clear cell renal cell carcinoma (ccRCC) on four-phase contrast-enhanced computed tomography (CECT). Seventeen patients with AML without visible fat and 50 patients with ccRCC of size ≤4.5 cm who had also undergone preoperative four-phase CECT were included in this study. The histogram, grey-level co-occurrence matrix (GLCM), and grey-level run length matrix (GLRLM) were evaluated. Sequential feature selection (SFS) and support vector machine (SVM) classifier with leave-one-out cross validation were used. Using the SFS and SVM classifiers, five texture features were selected; mean (unenhanced), standard deviation (unenhanced and excretory), cluster prominence (nephrographic), and long-run high grey-level emphasis (corticomedullary). Diagnostic performance of the five selected texture features for all CT phases was as follows: 82% sensitivity, 76% specificity, 85% accuracy, and 85 area under the receiver operating characteristic curve (AUC). In the subgroup analysis, the AUCs of each phase were significantly >0.5 (p<0.05). In the pairwise comparison of AUCs between four phases, there were no significant differences between the four phases except the unenhanced and corticomedullary phases (p=0.015), i.e., the unenhanced phase showed slightly higher AUC than the corticomedullary phase. Texture analysis of small renal masses (≤4.5 cm) on four-phase CECT can accurately differentiate AML without visible fat from ccRCC and showed good diagnostic performance for both the unenhanced and enhanced phases.

收起

展开

DOI:

10.1016/j.crad.2019.02.018

被引量:

14

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(312)

参考文献(0)

引证文献(14)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读