Downregulation of lysyl oxidase-like 4 LOXL4 by miR-135a-5p promotes lung cancer progression in vitro and in vivo.
Aberrant microRNAs are widely identified in multiple cancers, including lung cancer. miR-135a-5p can function as a significant tumor regulator in diverse cancers via impacting multiple genes in oncogenic pathways. Nevertheless, the biological role of miR-135a-5p in lung cancer is poorly known. Here, we investigated its function in lung cancer. As exhibited, miR-135a-5p was elevated in lung cancer cells in contrast to BEAS-2B cells. Then, we inhibited miR-135a-5p expression by transfecting LV-anti-miR-135a-5p into lung cancer cells. As displayed, miR-135a-5p was obviously reduced in A549 and H1299 cells. Knockdown of miR-135a-5p repressed lung cancer cell growth and cell proliferation. Meanwhile, cell colony formation capacity was depressed, cell apoptosis was enhanced and cell cycle progression was blocked in G1 phase by inhibition of miR-135a-5p in vitro. Additionally, the migration and invasion of A549 and H1299 cells was strongly depressed by LV-anti-miR-135a-5p. For another, by using informatics analysis, lysyl oxidase-like 4 (LOXL4) was speculated as the downstream target of miR-135a-5p. We validated their direct correlation and moreover, overexpression of miR-135a-5p restrained LOXL4 levels in lung cancer cells. Subsequently, we proved that miR-135a-5p promoted lung cancer development via targeting LOXL4 by carrying out the in vivo assays. Taken these together, our study revealed miR-135a-5p might be indicated as a perspective for lung cancer via targeting LOXL4.
Zhang Y
,Jiang WL
,Yang JY
,Huang J
,Kang G
,Hu HB
,Xie S
... -
《-》
Down-regulation of MBNL1-AS1 contributes to tumorigenesis of NSCLC via sponging miR-135a-5p.
Lung cancer remains a big threat to human health. Growing evidence has reported the crucial regulatory effect of lncRNAs on NSCLC progression. Nevertheless, the detailed function of lncRNA MBNL1-AS1 involved in NSCLC development is poorly known. In our research, we confirmed that MBNL1-AS1 was significantly reduced in NSCLC patient tissues and NSCLC cells. Meanwhile, we reported that overexpression of MBNL1-AS1 obviously repressed A549 and H1975 cell proliferation, blocked cell cycle and inhibited the migration and invasion. Moreover, A549 and H1975 cell apoptosis was increased by the overexpression of MBNL1-AS1. Then, we predicted that miR-135a-5p was a potential target of MBNL1-AS1 and its level was correlated with MBNL1-AS1 in NSCLC negatively. Our previous study indicated miR-135a-5p could induce lung cancer progression through regulating LOXL4. Here, we found that MBNL1-AS1 was able to regulate miR-135a-5p expression negatively. The direct binding association between MBNL1-AS1 and miR-135a-5p was proved using dual-luciferase reporter assay and RIP experiment. Subcutaneous xenotransplanted tumor model was set up and it was confirmed increased MBNL1-AS1 remarkably restrained tumorigenic ability of NSCLC through sponging miR-135a-5p in vivo. To sum up, our data revealed the significance of the MBNL1-AS1 and miR-135a-5p in NSCLC. In conclusion, MBNL1-AS1 could be a new therapeutic target to treat NSCLC.
Cao G
,Tan B
,Wei S
,Shen W
,Wang X
,Chu Y
,Rong T
,Gao C
... -
《-》
miR-210 promotes lung adenocarcinoma proliferation, migration, and invasion by targeting lysyl oxidase-like 4.
Accumulating evidence has revealed that various microRNAs are deregulated and involved in lung cancer development and metastasis. miR-210 is implicated in several cancer progression. However, the detailed biological function and role of miR-210 in lung adenocarcinoma remains unclear. Our current study was aimed to investigate the mechanism of miR-210 in lung adenocarcinoma progression. We observed that miR-210 was significantly upregulated in lung cancer cell lines (A549 and H1650) in comparison to BEAS-2B cells. In addition, we found that miR-210 was greatly elevated in lung adenocarcinoma tissues. Then, it was shown that overexpression of miR-210 was able to promote lung cancer cell proliferation and colony formation ability while inhibitors of miR-210 exhibited a reversed phenomenon. Subsequently, A549 and H1650 cell migration and invasion capacity were obviously restrained by miR-210 inhibition whereas induced by miR-210 mimics. Lysyl oxidase-like 4 (LOXL4), a member of the secreted copper-dependent amine oxidases has been found to be increased or decreased in different cancer types. Here, we confirmed that LOXL4 could serve as a downstream target of miR-210 and miR-210 promoted lung cancer progression via targeting LOXL4. In A549 and H1650 cells, knockdown of LOXL4 dramatically repressed lung cancer cell proliferation, migration, and invasion. In conclusion, our study implied that miR-210 might indicate a new perspective for lung cancer.
Xie S
,Liu G
,Huang J
,Hu HB
,Jiang W
... -
《-》
MicroRNA-135a-3p is downregulated and serves as a tumour suppressor in ovarian cancer by targeting CCR2.
MicroRNAs have been demonstrated to play a crucial role in the development of ovarian cancer. Many studies prove that forms of miR-135a, including miR-135a-5p and miR-135a-3p, serve as tumour suppressors in multiple cancers. Nevertheless, the precise function of miR-135a-3p and the molecular mechanisms underlying the involvement of miR-135a-3p in ovarian carcinoma cell growth and metastasis remain largely unknown. Herein, we report that miR-135a-3p expression was significantly downregulated in ovarian carcinoma tissues compared with corresponding adjacent non-tumour tissues. Ectopic miR-135a-3p expression inhibited ovarian carcinoma cell proliferation, migration and invasion in vitro. Additionally, the overexpression of miR-135a-3p inhibited epithelial-mesenchymal transition (EMT) in ovarian cancer cells. A luciferase reporter assay confirmed that the C-C chemokine receptor type 2 (CCR2) gene was the target of miR-135a-3p. In addition, CCR2 depletion mimicked the inhibitory effects of miR-135a-3p on ovarian cancer cells in vitro. Rescue experiments using CCR2 overexpression further verified that CCR2 was a functional target of miR-135a-3p. Xenograft model assays demonstrated that miR-135a-3p functions as an anti-oncogene by targeting CCR2 in vivo. Taken together, these data prove that miR-135a-3p serves as a tumour suppressor gene in ovarian cancer by regulating CCR2.
Duan S
,Dong X
,Hai J
,Jiang J
,Wang W
,Yang J
,Zhang W
,Chen C
... -
《-》
Effect of microRNA-135a on Cell Proliferation, Migration, Invasion, Apoptosis and Tumor Angiogenesis Through the IGF-1/PI3K/Akt Signaling Pathway in Non-Small Cell Lung Cancer.
This study explored the ability of microRNA-135a (miR-135a) to influence cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer (NSCLC).
NSCLC tissues and adjacent normal tissues were collected from 138 NSCLC patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of miR-135a and IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 mRNA; western blotting was used to determine the expression levels of IGF-1, PI3K and Akt protein; and enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression levels of VEGF, bFGF and IL-8 protein. Human NSCLC cell lines (A549, H460, and H1299) and the human bronchial epithelial cell line (HBE) were selected. A549 cells were assigned to blank, negative control (NC), miR-135a mimics, miR-135a inhibitors, IGF-1 siRNA and miR-135a inhibitors + IGF-1 siRNA groups. The following were performed: an MTT assay to assess cell proliferation, a scratch test to detect cell migration, a Transwell assay to measure cell invasion, and a flow cytometry to analyze cell apoptosis.
The expression level of miR-135a was lower while those of IGF-1, PI3K and Akt mRNA were higher in NSCLC tissues than in the adjacent normal tissues. Dual-luciferase reporter assay indicated IGF-1 as a target of miR-135a. The in vitro results showed that compared with the blank group, cell proliferation, migration and invasion were suppressed, mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 were reduced, and cell apoptosis was enhanced in the miR-135a mimics and IGF-1 siRNA groups. Compared with the IGF-1 siRNA group, cells in the miR-135a inhibitors + IGF-1 siRNA group demonstrated increased cell proliferation, migration and invasion, elevated mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 and reduced cell apoptosis.
These findings indicated that miR-135a promotes cell apoptosis and inhibits cell proliferation, migration, invasion and tumor angiogenesis by targeting IGF-1 gene through the IGF-1/PI3K/Akt signaling pathway in NSCLC.
Zhou Y
,Li S
,Li J
,Wang D
,Li Q
... -
《-》