The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress.
摘要:
Studies have suggested that increased root hydraulic conductivity in mycorrhizal roots could be the result of increased cell-to-cell water flux via aquaporins. This study aimed to elucidate if the key effect of the regulation of maize aquaporins by the arbuscular mycorrhizal (AM) symbiosis is the enhancement of root cell water transport capacity. Thus, water permeability coefficient (Pf ) and cell hydraulic conductivity (Lpc ) were measured in root protoplast and intact cortex cells of AM and non-AM plants subjected or not to water stress. Results showed that cells from droughted-AM roots maintained Pf and Lpc values of nonstressed plants, whereas in non-AM roots, these values declined drastically as a consequence of water deficit. Interestingly, the phosphorylation status of PIP2 aquaporins increased in AM plants subjected to water deficit, and Pf values higher than 12 μm s-1 were found only in protoplasts from AM roots, revealing the higher water permeability of AM root cells. In parallel, the AM symbiosis increased stomatal conductance, net photosynthesis, and related parameters, showing a higher photosynthetic capacity in these plants. This study demonstrates a better performance of AM root cells in water transport under water deficit, which is connected to the shoot physiological performance in terms of photosynthetic capacity.
收起
展开
DOI:
10.1111/pce.13551
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(390)
参考文献(0)
引证文献(34)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无