-
A holistic study on potential toxic effects of carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) on zebrafish (Danio rerio) embryos/larvae.
Multi-walled carbon nanotubes (MWCNTs) have widespread use in industrial and consumer products and great potential in biomedical applications. This leads to inevitably their release into the environment and the formation of their toxic effects on organisms. These effects can change depending on their physicochemical characteristics. Therefore, the toxicological findings of MWCNTs are inconsistent. Their toxicities related to surface modification have not been elucidated in a holistic manner. Hence, this study was conducted to clarify their potential toxic effects on zebrafish embryos/larvae in a comprehensive approach using morphologic, biochemical and molecular parameters. Zebrafish embryos were exposed to 5, 10, 20 mg/L doses of MWCNTs-COOH at 4 h after fertilization and grown until 96 hpf. Physiological findings demonstrated that they induced a concentration-dependent increase in the mortality rate, delayed hatching and decrease in the heartbeat rate. Moreover, it caused abnormalities including yolk sac edema, pericardial edema, head, tail malformations, and vertebral deformities. These effects may be due to the alterations in antioxidant and immune system related gene expressions after their entry into zebrafish embryo/larvae. The entry was confirmed from the evaluation of Raman spectra collected from the head, yolk sac, and tail of control and the nanotube treated groups. The gene expression analysis indicated the changes in the expression of oxidative stress (mtf-1, hsp70, and nfkb) and innate immune system (il-1β, tlr-4, tlr-22, trf, and cebp) related genes, especially an increased in the expression of the hsp70 and il-1β. These findings proved the developmental toxicities of MWCNTs-COOH on the zebrafish embryos/larvae.
Icoglu Aksakal F
,Ciltas A
,Simsek Ozek N
《-》
-
Impact of copper oxide nanoparticles (CuO NPs) exposure on embryo development and expression of genes related to the innate immune system of zebrafish (Danio rerio).
CuO NPs are nanomaterials with catalytic activity and unique thermo-physical properties used in different fields such as sensors, catalysts, surfactants, batteries, antimicrobials and solar energy transformations. Because of its wide field of use, these nanoparticles accumulate in the aquatic environment and thus lead to toxic effects on aquatic organisms. The toxicological findings about CuO NPs are controversial and these effects of CuO NPs on aquatic organisms have not been elucidated in detail. Therefore, the aim of this study was to investigate the toxic effect of CuO NPs on zebrafish embryos using different parameters including molecular and morphologic. For this purpose, zebrafish embryos at 4 h after post fertilization (hpf) were exposed to different concentrations of CuO NPs (0.5, 1, 1.5 mg/L) until 96 hpf. Mortality, hatching, heartbeat, malformation rates were examined during the exposure period. In addition, Raman spectroscopy was used to determine whether CuO NPs entered into the tissues of zebrafish larvae or not. Moreover, the alterations in the expression of genes related to the antioxidant system and innate immune system were examined in the embryos exposed to CuO NPs during 96 h. The results showed that CuO NPs was not able to enter into the zebrafish embryos/larvae tissues but caused an increased the mortality rate, a delayed hatching, and a decreased heartbeat rate. Moreover, CuO NPs caused several types of abnormalities such as head and tail malformations, vertebral deformities, yolk sac edema, and pericardial edema. RT-PCR results showed that the transcription of mtf-1, hsp70, nfkb and il-1β, tlr-4, tlr-22, trf, cebp was changed by the application of CuO NPs. In conclusion, short-term exposure to CuO NPs has toxic effects on the development of zebrafish embryos.
Aksakal FI
,Ciltas A
《COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-TOXICOLOGY & PHARMACOLOGY》
-
Developmental toxicity, oxidative stress, and related gene expression induced by dioxin-like PCB 126 in zebrafish (Danio rerio).
3,3',4,4',5-Pentachlorobiphenyl (PCB126) cause multiple adverse effects in organisms including animals and humans. Although PCB toxicities are linked to oxidative damage in rodents, the mechanism in early life stages of zebrafish is not clear. To explore the developmental toxicity mechanism of PCB126, three paradigms (toxicological phenotypes, biochemical changes, and molecular changes) were studied in 3-h postfertilization (hpf) zebrafish (Danio rerio) embryos exposed to different PCB126 concentrations (0, 16, 32, 64, and 128 μg/L) until 168 hpf. Developmental malformations, including pericardial and yolk sac edema, impaired lower jaw growth, spinal curvature, head edema and failure to inflate the swim bladder were observed, some as early as 72 hpf. Mortality was not apparent in early stages but significantly increased in a dose-dependent manner from 144 hpf onward. A dose-dependent significant increase in malformation rate was observed from 72 hpf onward with up to 100% at 132 hpf in embryos exposed to 128 μg/L of PCB126. Higher doses of PCB126 significantly decreased the copper-zinc superoxide dismutase (CuZn-Sod), catalase (Cat), and glutathione peroxidase (Gpx) enzyme activities at 96, 132 hpf, but markedly declined from thereafter. PCB126 at 128 μg/L significantly increased the malondialdehyde content at 72, 96, and 132 hpf. The transcriptional gene expression of antioxidant enzymes Cat and Gpx was upregulated in embryos exposed to 64 μg/L of PCB126 at 24 and 96 hpf. Sod1 messenger RNA (mRNA) was low in embryos exposed to 32 μg/L at 72 and 96 hpf but was induced in embryos exposed to 64 and 128 μg/L doses at 132 hpf. Collectively, the results suggest oxidative stress as a major factor in the induction of multiple developmental abnormalities in early life stages of zebrafish exposed to PCB126. However, the relationship between the antioxidant enzyme activity and the mRNA expression was not clear and the potential reasons for this are discussed.
Liu H
,Nie FH
,Lin HY
,Ma Y
,Ju XH
,Chen JJ
,Gooneratne R
... -
《-》
-
The presence of MWCNTs reduces developmental toxicity of PFOS in early life stage of zebrafish.
Both carbon nanotubes (CNTs) and perfluorooctane sulfonate (PFOS) are used widely. There is considerable concern regarding their ecotoxicity. CNTs might interact with PFOS in water and result in different impacts compared with those after single exposures. To our knowledge, the developmental toxicity of PFOS in the presence of multi-walled carbon nanotubes (MWCNTs) in the early life stage of zebrafish (from 3 h post fertilization (hpf) to 96 hpf) was investigated for the first time in this study. The embryos and larvae were exposed to PFOS (0.2, 0.4, 0.8, and 1.6 mg/L), MWCNTs (50 mg/L), and a mixture of both. Compared with PFOS exposure, the adverse effects induced by PFOS on the hatching rate of zebrafish embryos and the heart rate and body length of zebrafish larvae were reduced in the presence of MWCNTs, and mortality and malformation were also alleviated. In addition, zebrafish larvae exposed to PFOS showed decreased activities of superoxide dismutase, catalase, and glutathione peroxidase, as well as decreased levels of reactive oxygen species and malondialdehyde, in the presence of MWCNTs, indicating that oxidative stress and lipid peroxidation was relieved. Thus, the presence of MWCNTs reduces the developmental toxicity of PFOS in the early life stage of zebrafish.
Wang S
,Zhuang C
,Du J
,Wu C
,You H
... -
《-》
-
Developmental toxicity induced by Cu(OH)(2) nanopesticide in zebrafish embryos.
The current study evaluates the adverse effects of Cu(OH)2 nanopesticide (CNPE) on the early life stages of zebrafish (Danio rerio). The developmental toxicity was determined using different parameters such as mortality (including LC50 ), hatching, heart rates, malformations, and alteration of the gene expressions. Zebrafish embryos (4 hpf-hours postfertilization) were exposed to 1.0, 2.0, 4.0, 8.0, and 16.0 mg/l CNPE doses until 96 hpf. The 96 hours LC50 was recorded at 6.258 mg/l. Seventy-two hpf total malformation index values for 2.0, 4.0, and 8.0 mg/l CNPE doses were 4.3, 7.2 and 7.9, respectively. 1.0 mg/l CNPE is not toxic for the zebrafish embryos/larvae. 2.0 to 8.0 CNPE doses caused some abnormalities in embryos/larvae morphology, including lack of body parts, tail deformities, chorda deformity, bubbled head, scoliosis, lordosis, weak or non-pigmentation, decreased heart rate and larva length. 16.0 mg/l CNPE caused mortality in 72 hpf. The expression levels of seven immune system-related genes (il-1β, il-8, cebp, tlr4, hsp70, NF-kB, and mtf-1) were examined. The transcription level of il-1β, il-8, tlr4, hsp70, and NF-kB genes significantly increased in the CNPE exposure groups. While the expression of the mtf-1 gene considerably decreased, the cebp gene expression level did not change in the 4.0 and 8.0 mg/l CNPE doses. In conclusion, CNPE could induce developmental toxicity with malformations in embryos/larvae and alter the gene expression.
Aksakal FI
,Sisman T
《-》