A radiomics-based nomogram for the preoperative prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma.

来自 PUBMED

作者:

Cai WHe BHu MZhang WXiao DYu HSong QXiang NYang JHe SHuang YHuang WJia FFang C

展开

摘要:

To develop and validate a radiomics-based nomogram for the preoperative prediction of posthepatectomy liver failure (PHLF) in patients with hepatocellular carcinoma (HCC). One hundred twelve consecutive HCC patients who underwent hepatectomy were included in the study pool (training cohort: n = 80, validation cohort: n = 32), and another 13 patients were included in a pilot prospective analysis. A total of 713 radiomics features were extracted from portal-phase computed tomography (CT) images. A logistic regression was used to construct a radiomics score (Rad-score). Then a nomogram, including Rad-score and other risk factors, was built with a multivariate logistic regression model. The discrimination, calibration and clinical utility of nomogram were evaluated. The Rad-score could predict PHLF with an AUC of 0.822 (95% CI, 0.726-0.917) in the training cohort and of 0.762 (95% CI, 0.576-0.948) in the validation cohort; however, the approach could not completely outmatch the existing methods (CP [Child-Pugh], MELD [Model of End Stage Liver Disease], ALBI [albumin-bilirubin]). The individual predictive nomogram that included the Rad-score, MELD and performance status (PS) showed better discrimination with an AUC of 0.864 (95% CI, 0.786-0.942), which was higher than the AUCs of the conventional methods (nomogram vs CP, MELD, and ALBI at P < 0.001, P < 0.005, and P < 0.005, respectively). In the validation cohort, the nomogram discrimination was also superior to those of the other three methods (AUC: 0.896; 95% CI, 0.774-1.000). The calibration curves showed good agreement in both cohorts, and the decision curve analysis of the entire cohort revealed that the nomogram was clinically useful. A pilot prospective analysis showed that the radiomics nomogram could predict PHLF with an AUC of 0.833 (95% CI, 0.591-1.000). A nomogram based on the Rad-score, MELD, and PS can predict PHLF.

收起

展开

DOI:

10.1016/j.suronc.2018.11.013

被引量:

30

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(925)

参考文献(0)

引证文献(30)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读