Ski-related novel protein suppresses the development of diabetic nephropathy by modulating transforming growth factor-β signaling and microRNA-21 expression.

来自 PUBMED

作者:

Wang YLiu LPeng WLiu HLiang LZhang XMao YZhou XShi MXiao YZhang FZhang YLiu LYan RGuo B

展开

摘要:

Unveiling the mechanisms that drive the pathological phenotypes of diabetic nephropathy (DN) could help develop new effective therapeutics for this ailment. Transforming growth factor-β1 (TGF-β1)/Smad3 signaling is aberrantly induced in DN, leading to elevated microRNA-21 (miR-21) expression and tissue fibrosis. Ski-related novel protein (SnoN) negatively regulates the TGF-β pathway, but the relationship between SnoN and miR-21 has not been described in the context of DN. In this study, this association was investigated in vivo (streptozotocin-induced rat model of diabetes) and in vitro (NRK-52E model system under high glucose conditions). In both model systems, we observed reduced amounts of the SnoN protein and elevated miR-21 amounts, indicative of an inverse relationship. These changes in SnoN and miR-21 amounts were accompanied by reduced E-cadherin and elevated α-smooth muscle actin and collagen III levels, consistent with epithelial to mesenchymal transition (EMT). In vitro overexpression of SnoN in NRK-52E cells downregulated miR-21 at the transcriptional and posttranscriptional levels and repressed EMT and extracellular matrix (ECM) deposition. In contrast, knockdown of SnoN resulted in miR-21 upregulation, particularly at the transcriptional level. We further demonstrated that overexpression and inhibition of miR-21 promoted and suppressed EMT and ECM deposition, respectively, without affecting SnoN levels. Our results indicated that SnoN suppresses the development of DN as well as renal fibrosis by downregulating miR-21, and therefore represents a novel and promising therapeutic target for DN.

收起

展开

DOI:

10.1002/jcp.28425

被引量:

14

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(352)

参考文献(0)

引证文献(14)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读