Effect of high pressure homogenization on physicochemical properties of curcumin nanoparticles prepared by antisolvent crystallization using HPMC or PVP.

来自 PUBMED

作者:

Homayouni ASohrabi MAmini MVarshosaz JNokhodchi A

展开

摘要:

Dissolution enhancement of poorly water soluble drugs is a major challenge in pharmaceutical industry. The aim of this study is to fabricate curcumin nanoparticles by antisolvent crystallization in the presence of PVP-K30 or HPMC with various concentrations as a stabilizer. The effect of high pressure homogenization on properties of curcumin particles is also investigated in this study. The antisolvent crystallization method followed by freeze drying (CRS-FD) and also antisolvent crystallization and high pressure homogenization followed by freeze drying (HPH-FD) were employed to modify curcumin particles. Physical mixtures of the drug and additives were also prepared for comparison purposes. The solid state analysis (DSC, XRPD and FT-IR studies), particle size measurement, morphological analysis, saturation solubility and dissolution behavior of the samples were investigated. The curcumin crystallized without using stabilizer produced polymorph 2 curcumin with lower crystallinity and higher solubility. The samples obtained in the presence of stabilizers showed higher solubility compared to its physical mixtures counterpart. It was found that the stabilizers used in the current study were capable of inhibiting the crystal growth of particles during crystallization. High pressure homogenizer method generated smaller particles compared to those samples that were not subjected to high pressure homogenizer (for example, 2748 nm for 5% PVP CRS-FD sample and 706 nm for 5% PVP HPH-FD sample). Particles obtained via HPH showed better solubility and dissolution rate compared to those samples that HPH was not employed (for example, the saturated solubility of 25% PVP CRS-FD sample was near 2 μg/ml while this amount was approximately 4.3 μg/ml for 25% HPH-FD sample. The effect of high pressure homogenization on dissolution rate is more pronounced for samples with lower stabilizer ratio. The samples prepared with high pressure homogenizer using 50% PVP showed 25-fold higher solubility compared to untreated curcumin. Generally, it can be concluded that the method of preparation, selection of suitable stabilizer and concentration of stabilizer play a critical role on particle size and dissolution rate of curcumin.

收起

展开

DOI:

10.1016/j.msec.2018.12.128

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(304)

参考文献(0)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读