-
Carotenoid Biosynthesis in Oriental Melon (Cucumis melo L. var. makuwa).
Full-length cDNAs encoding ξ-carotene desaturase (CmZDS), lycopene ε-cyclase (CmLCYE), β-ring carotene hydroxylase (CmCHXB), and zeaxanthin epoxidase (CmZEP), and partial-length cDNA encoding ε-ring carotene hydroxylase (CmCHXE) were isolated in Chamoe ( L. var. ), an important commercial fruit. Sequence analyses revealed that these proteins share high identity and common features with other orthologous genes. Expression levels of entire genes involved in the carotenoid biosynthetic pathway were investigated in the peel, pulp, and stalk of chamoe cultivars Ohbokggul and Gotgam. Most of the carotenoid biosynthetic genes were expressed at their highest levels in the stalk, whereas carotenoids were highly distributed in the peel. The expression levels of all carotenoid biosynthetic genes in fruits of the native cultivar Gotgam chamoe were higher than those in the cultivar Ohbokggul chamoe, consistent with the abundant carotenoid accumulation in Gotgam chamoe fruits and trace carotenoid content of Ohbokggul chamoe fruit. Lutein and β-carotene were the dominant carotenoids; high levels (278.05 μg g and 112.02 μg g dry weight, respectively) were found in the peel of Gotgam chamoe. Our findings may provide a foundation for elucidating the carotenoid biosynthetic mechanism in . and inform strategies for developing new chamoe cultivars with improved characteristics.
Tuan PA
,Lee J
,Park CH
,Kim JK
,Noh YH
,Kim YB
,Kim H
,Park SU
... -
《Foods》
-
Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya.
Red-fleshed papaya is a good material to study the different carotenoids accumulation mechanism in the peel and flesh. Although the peel and flesh of papaya closely integrated into one body, the flesh coloration changing from white to red, while the exocarp coloration changing from green to yellow. In this study, the major carotenoids accumulation and the expression patterns of key carotenoid biosynthesis pathway genes in the process of papaya fruit ripening were studied, and the carotenoid biosynthetic pathways in the yellow peel and red flesh of papaya were investigated.
The carotenoid composition in papaya flesh and peel were different. The major carotenoids were lutein and β-carotene in the peel, while lycopene in the flesh. The accumulation of carotenoids, including lycopene, β-carotene, and β-cryptoxanthin were considered to cause the orange-red color of papaya cv. 'Daqing No.10' flesh. The color of peel changed from green to yellow because of the fast degradation of chlorophyll and the appearance of carotenoids such as lutein and β-carotene. Thirteen genes that encode enzymes in the carotenoid biosynthetic pathway were detected in papaya fruit transcriptome: two phytoene synthase (PSY1, PSY2), two phytoene desaturase (PDS1, PDS2), one ζ-carotene desaturase (ZDS), four lycopene cyclase (CYCB, LCYB1, LCYB2, LCYE), one β-carotene hydroxylase (CHYB), one carotene ε-monooxygenase (LUT1), one violaxanthin de-epoxidase (VDE), and one zeaxanthin epoxidase (ZEP). The results of RNA-Seq and RT-qPCR showed the expression of carotenoid biosynthetic pathway genes was consistent with the change of carotenoid content. Carotenoid biosynthetic pathways in the yellow peel and red flesh of papaya were analysed based on the major carotenoids accumulation and the expression patterns of key carotenoid biosynthesis pathway genes. There was only a β-branch of carotenoid biosynthesis in the flesh of papaya, while there were both α- and β-branch of carotenoid biosynthesis in papaya peel. In the process of papaya fruit ripening, the α-branch was inhibited and the β-branch was enhanced in the peel.
The differential carotenoid accumulation and biosynthesis pathway genes expression in peel and flesh, lay a foundation for further study and provide further insights to control fruit color and improve fruit quality and appearance.
Shen YH
,Yang FY
,Lu BG
,Zhao WW
,Jiang T
,Feng L
,Chen XJ
,Ming R
... -
《BMC GENOMICS》
-
Development of SSR markers by next-generation sequencing of Korean landraces of chamoe (Cucumis melo var. makuwa).
The oriental melon (Cucumis melo var. makuwa), called 'chamoe' in Korean, is a popular fruit crop cultivated mainly in Asia and a high-market value crop in Korea. To provide molecular breeding resources for chamoe, we developed and characterized genomic SSR markers from the preliminary Illumina read assemblies of Gotgam chamoe (one of the major landraces; KM) and SW3 (the breeding parent). Mononucleotide motifs were the most abundant type of markers, followed by di-, tri-, tetra-, and pentanucleotide motifs. The most abundant dinucleotide was AT, followed by AG and AC, and AAT was the most abundant trinucleotide motif in both assemblies. Following our SSR-marker development strategy, we designed a total of 370 primer sets. Of these, 236 primer sets were tested, exhibiting 93 % polymorphism between KM and SW3. Those polymorphic SSRs were successfully amplified in the netted and Kirkagac melons, which respectively exhibited 81 and 76 % polymorphism relative to KM, and 32 and 38 % polymorphism relative to SW3. Seven selected SSR markers with a total of 17 alleles (2-3 alleles per locus) were used to distinguish between KM, SW3, and four chamoe cultivars. Our results represent the first attempt to provide genomic resources for Korean landraces for the purposes of chamoe breeding, as well as to discover a set of SSR markers capable of discriminating chamoe varieties from Korea and the rest of Asia, which possess little genetic diversity. This study establishes a highly efficient strategy for developing SSR markers from preliminary Illumina assemblies of AT-rich genomes.
Park I
,Kim J
,Lee J
,Kim S
,Cho O
,Yang K
,Ahn J
,Nahm S
,Kim H
... -
《-》
-
Molecular characterization of carotenoid biosynthetic genes and carotenoid accumulation in Lycium chinense.
Lycium chinense is a shrub that has health benefits and is used as a source of medicines in Asia. In this study, a full-length cDNA clone encoding β-ring carotene hydroxylase (LcCHXB) and partial-length cDNA clones encoding phytoene synthase (LcPSY), phytoene desaturase (LcPDS), ξ-carotene desaturase (LcZDS), lycopene β-cyclase (LcLCYB), lycopene ε-cyclase (LcLCYE), ε-ring carotene hydroxylase (LcCHXE), zeaxanthin epoxidase (LcZEP), carotenoid cleavage dioxygenase (LcCCD1), and 9-cis epoxycarotenoid dioxygenase (LcNCED) were identified in L. chinense. The transcripts were constitutively expressed at high levels in leaves, flowers and red fruits, where the carotenoids are mostly distributed. In contrast, most of the carotenoid biosynthetic genes were weakly expressed in the roots and stems, which contained only small amounts of carotenoids. The level of LcLCYE transcripts was very high in leaves and correlated with the abundance of lutein in this plant tissue. During maturation, the levels of lutein and zeaxanthin in L. chinense fruits dramatically increased, concomitant with a rise in the level of β-cryptoxanthin. LcPSY, LcPDS, LcZDS, LcLCYB, and LcCHXE were highly expressed in red fruits, leading to their substantially higher total carotenoid content compared to that in green fruits. Total carotenoid content was high in both the leaves and red fruits of L. chinense. Our findings on the biosynthesis of carotenoids in L. chinense provide insights into the molecular mechanisms involved in carotenoid biosynthesis and may facilitate the optimization of carotenoid production in L. chinense.
Zhao S
,Tuan PA
,Kim JK
,Park WT
,Kim YB
,Arasu MV
,Al-Dhabi NA
,Yang J
,Li CH
,Park SU
... -
《MOLECULES》
-
Molecular characterization of carotenoid biosynthetic genes and carotenoid accumulation in Scutellaria baicalensis Georgi.
Scutellaria baicalensis has a wide range of biological activities and has been considered as an important traditional drug in Asia and North America for centuries. A partial-length cDNA clone encoding phytoene synthase (SbPSY) and full-length cDNA clonesencoding phytoene desaturase (SbPDS), ξ-carotene desaturase (SbZDS), β-ring carotene hydroxylase (SbCHXB), and zeaxanthin epoxidase (SbZEP)were identifiedin S. baicalensis. Sequence analyses revealed that these proteins share high identity and conserved domains with their orthologous genes. SbPSY, SbPDS, SbZDS, SbCHXB, and SbZEP were constitutively expressed in the roots, stems, leaves, and flowers of S.b aicalensis. SbPSY, SbPDS, and SbZDS were highly expressed in the stems, leaves, and flowers and showed low expression in the roots, where only trace amounts of carotenoids were detected. SbCHXB and SbZEP transcripts were expressed at relatively high levels in the roots, stems, and flowers and were expressed at low levels in the leaves, where carotenoids were mostly distributed. The predominant carotenoids in S.b aicalensiswere lutein and β-carotene, with abundant amounts found in the leaves (517.19 and 228.37 μg g(-1) dry weight, respectively). Our study on the biosynthesis of carotenoids in S. baicalensis will provide basic data for elucidating the contribution of carotenoids to the considerable medicinal properties of S. baicalensis.
Tuan PA
,Kim YB
,Kim JK
,Arasu MV
,Al-Dhabi NA
,Park SU
... -
《EXCLI Journal》