Predicting the effect of reference population on the accuracy of within, across, and multibreed genomic prediction.

来自 PUBMED

作者:

van den Berg IMeuwissen THEMacLeod IMGoddard ME

展开

摘要:

Genomic prediction is widely used to select candidates for breeding. Size and composition of the reference population are important factors influencing prediction accuracy. In Holstein dairy cattle, large reference populations are used, but this is difficult to achieve in numerically small breeds and for traits that are not routinely recorded. The prediction accuracy is usually estimated using cross-validation, requiring the full data set. It would be useful to have a method to predict the benefit of multibreed reference populations that does not require the availability of the full data set. Our objective was to study the effect of the size and breed composition of the reference population on the accuracy of genomic prediction using genomic BLUP and Bayes R. We also examined the effect of trait heritability and validation breed on prediction accuracy. Using these empirical results, we investigated the use of a formula to predict the effect of the size and composition of the reference population on the accuracy of genomic prediction. Phenotypes were simulated in a data set containing real genotypes of imputed sequence variants for 22,752 dairy bulls and cows, including Holstein, Jersey, Red Holstein, and Australian Red cattle. Different reference populations were constructed, varying in size and composition, to study within-breed, multibreed, and across-breed prediction. Phenotypes were simulated varying in heritability, number of chromosomes, and number of quantitative trait loci. Genomic prediction was carried out using genomic BLUP and Bayes R. We used either the genomic relationship matrix (GRM) to estimate the number of independent chromosomal segments and subsequently to predict accuracy, or the accuracies obtained from single-breed reference populations to predict the accuracies of larger or multibreed reference populations. Using the GRM overestimated the accuracy; this overestimation was likely due to close relationships among some of the reference animals. Consequently, the GRM could not be used to predict the accuracy of genomic prediction reliably. However, a method using the prediction accuracies obtained by cross-validation using a small, single-breed reference population predicted the accuracy using a multibreed reference population well and slightly overestimated the accuracy for a larger reference population of the same breed, but gave a reasonably close estimate of the accuracy for a multibreed reference population. This method could be useful for making decisions regarding the size and composition of the reference population.

收起

展开

DOI:

10.3168/jds.2018-15231

被引量:

18

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(260)

参考文献(0)

引证文献(18)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读