Immune Tolerance-Adjusted Personalized Immunogenicity Prediction for Pompe Disease.
Infantile-onset Pompe disease (IOPD) is a glycogen storage disease caused by a deficiency of acid alpha-glucosidase (GAA). Treatment with recombinant human GAA (rhGAA, alglucosidase alfa) enzyme replacement therapy (ERT) significantly improves clinical outcomes; however, many IOPD children treated with rhGAA develop anti-drug antibodies (ADA) that render the therapy ineffective. Antibodies to rhGAA are driven by T cell responses to sequences in rhGAA that differ from the individuals' native GAA (nGAA). The goal of this study was to develop a tool for personalized immunogenicity risk assessment (PIMA) that quantifies T cell epitopes that differ between nGAA and rhGAA using information about an individual's native GAA gene and their HLA DR haplotype, and to use this information to predict the risk of developing ADA. Four versions of PIMA have been developed. They use EpiMatrix, a computational tool for T cell epitope identification, combined with an HLA-restricted epitope-specific scoring feature (iTEM), to assess ADA risk. One version of PIMA also integrates JanusMatrix, a Treg epitope prediction tool to identify putative immunomodulatory (regulatory) T cell epitopes in self-proteins. Using the JanusMatrix-adjusted version of PIMA in a logistic regression model with data from 48 cross-reactive immunological material (CRIM)-positive IOPD subjects, those with scores greater than 10 were 4-fold more likely to develop ADA (p<0.03) than those that had scores less than 10. We also confirmed the hypothesis that some GAA epitopes are immunomodulatory. Twenty-one epitopes were tested, of which four were determined to have an immunomodulatory effect on T effector response in vitro. The implementation of PIMA V3J on a secure-access website would allow clinicians to input the individual HLA DR haplotype of their IOPD patient and the GAA pathogenic variants associated with each GAA allele to calculate the patient's relative risk of developing ADA, enhancing clinical decision-making prior to initiating treatment with ERT. A better understanding of immunogenicity risk will allow the implementation of targeted immunomodulatory approaches in ERT-naïve settings, especially in CRIM-positive patients, which may in turn improve the overall clinical outcomes by minimizing the development of ADA. The PIMA approach may also be useful for other types of enzyme or factor replacement therapies.
De Groot AS
,Desai AK
,Lelias S
,Miah SMS
,Terry FE
,Khan S
,Li C
,Yi JS
,Ardito M
,Martin WD
,Kishnani PS
... -
《Frontiers in Immunology》
Optimizing treatment outcomes: immune tolerance induction in Pompe disease patients undergoing enzyme replacement therapy.
Pompe disease, a lysosomal storage disorder, is characterized by acid α-glucosidase (GAA) deficiency and categorized into two main subtypes: infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD). The primary treatment, enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA), faces challenges due to immunogenic responses, including the production of anti-drug antibody (ADA), which can diminish therapeutic efficacy. This study aims to assess the effectiveness of immune tolerance induction (ITI) therapy in cross-reactive immunologic material (CRIM)-positive Pompe disease patients with established high ADA levels.
In a single-center, open-label prospective study, we assessed ITI therapy's efficacy in Pompe disease patients, both IOPD and LOPD, with persistently elevated ADA titers (≥1:12,800) and clinical decline. The ITI regimen comprised bortezomib, rituximab, methotrexate, and intravenous immunoglobulin. Biochemical data, biomarkers, ADA titers, immune status, and respiratory and motor function were monitored over six months before and after ITI.
This study enrolled eight patients (5 IOPD and 3 LOPD). After a 6-month ITI course, median ADA titers significantly decreased from 1:12,800 (range 1:12,800-1:51,200) to 1:1,600 (range 1:400-1:12,800), with sustained immune tolerance persisting up to 4.5 years in some cases. Serum CK levels were mostly stable or decreased, stable urinary glucose tetrasaccharide levels were maintained in four patients, and no notable deterioration in respiratory or ambulatory status was noted. Adverse events included two treatable infection episodes and transient symptoms like numbness and diarrhea.
ITI therapy effectively reduces ADA levels in CRIM-positive Pompe disease patients with established high ADA titers, underscoring the importance of ADA monitoring and timely ITI initiation. The findings advocate for personalized immunogenicity risk assessments to enhance clinical outcomes. In some cases, prolonged immune suppression may be necessary, highlighting the need for further studies to optimize ITI strategies for Pompe disease treatment. ClinicalTrials.gov NCT02525172; https://clinicaltrials.gov/study/NCT02525172.
Chen HA
,Hsu RH
,Fang CY
,Desai AK
,Lee NC
,Hwu WL
,Tsai FJ
,Kishnani PS
,Chien YH
... -
《Frontiers in Immunology》
A new assay for fast, reliable CRIM status determination in infantile-onset Pompe disease.
Pompe disease is caused by a deficiency of acid α-glucosidase (GAA; EC, 3.2.1.20), and the infantile-onset form is rapidly fatal if left untreated. However, recombinant human GAA (rhGAA) enzyme replacement therapy (ERT) extends survival for infantile Pompe patients. Although cross-reactive immunologic material (CRIM)-negative patients, who lack detectable endogenous GAA, mount an immune response to rhGAA that renders the therapy ineffective, timely induction of immune tolerance in these patients may improve clinical outcomes. Previously, CRIM status has been determined by Western blot analysis in cultured skin fibroblasts, a process that can take a few weeks. We present a blood-based CRIM assay that can yield results within 48 to 72 h. Results from this assay have been confirmed by GAA Western blot analysis in fibroblasts or by GAA sequencing in a small number of Pompe disease patients. Rapid classification of CRIM status will assist in identifying the most effective treatment course and minimizing treatment delays in patients with infantile-onset Pompe disease.
Wang Z
,Okamoto P
,Keutzer J
《-》